Rererence No:_____

Date Entered: ___/___/

Water Project Data Entry Form Bibliography (type or print clearly)

AUTHORIZATIONS: (2 or 3 initials, be consistent)

Approved by: KY. Entered by: SMA Read by: TKU

INFORMATION PERTAINING TO: (check those applicable)

Hydrological Models:____ (Natural:___) Political Models:____

BIBLIOGRAPHIC INFORMATION: (Names- LAST, FIRST M. Dates - MM/DD/YY)

Author(s): Government of Transjorday Editor(s): Blake, G.S.

Article or Chapter Title: <u>Climate</u>

Journal or Book Title: Report on the Water Resources of Transjordan and their Development

Vol/No:_____ (8 spaces) Page No(s): 25-33 (12 spaces) Publisher: Crown Aspects for the atomies

Date of Publication: 1955 (12 spaces) Language Code: \underline{E} Place of Publication: __hondon

CLASSIFICATION:

type code(s):	- , , , , , , , , , , , , , , , , , , ,	
Basic Code(s):_	JO	Guntry: 15, 50, 54
Keywords(s):	Dead Sea Basin	J
Peatures:	- Secilar	primary data (

Notes: Blake was geological advisor to Gov't of Palestine

If not, where

LOCATION :

Copy at Meri (Y/N)?

[organization/contact; library/call no]

Ranfold

Plateau (see fig. 6). The evenness of this change from west to east is disturbed by the orography, however, so that the more highly elevated parts tend to lag behind the lower ones; thus, the date for the Jordan Valley is much earlier than would be expected by interpolation between the enclosing hill-ranges without consideration of altitude, and is earlier even than that of Jerusalem. With this median date, the dates of earliest and latest rains move in sympathy, and the further east, the later come the first rains, and the later are the last rains delayed.

(e) GREATEST FALL IN 24 HOURS.

The date when the greatest annual fall of rain occurs obeys the same general rule, arriving later the further eastwards the station lies. The percentage of years in which the greatest fall occurs in various months is shown in Table 1. In Palestine, the most popular month is December, in which occur 30% of the greatest annual falls, followed by January. Across the Jordan, the date is moved forward, and February becomes the most frequent month, with 45% of the greatest annual falls. In both regions, the greatest annual fall may occur anywhere within the rainy season, though with decreasing frequency towards the early and late dates. In Transjordan, the frequency tends to concentrate more round its favourite month, February.

TABLE 1.

Percentage of Years in which the Greatest Fall of Rain in 24 Hours has fallen in various months.

		Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May
Palestine Transjordan	 	7	13	30	24	20	3	3	
	 	-	12	8	27	45	4	2	2

N.B. Palestine: Average of Records 1930-1936 incl. for Jenin, Jerusalem, Jericho, Beersheba, Beisan, Acre, Haifa, Tel-Aviv, Beit Jamal, Gaza, as published in Dept. of Agriculture's Annual Reports.

Transjordan: Averages of all except desert stations for all records from 1933-34 to 1937-38.

(f) SUMMARY.

Discussion has so far been concerned with the variations of climate along a west-east section which divides the Dead Sea Basin. Moving to the east along this line, changes occur which are characteristic of any other parallel section across the basin. The average temperature tends to become lower, and the range between extremes to widen out; save that in the Ghor, the temperatures are higher, owing to the low elevation. The humidity tends to become more influenced by the season, showing a marked summer low value and a winter peak, as against an even value on the plain.

The minimum humidity comes in the summer, in June, preceding the maximum temperature by some two months. The rainfall tends to increase towards the Palestinian hills, to decrease in the Ghor, to increase again to a small peak on the edge of the Transjordanian Plateau, and then to tail off to a negligible amount in the Syrian desert. The median rainfall date becomes later towards the east, as does the month in which the year's greatest daily fall of rain occurs. The whole series of characteristics hinges round the change between the sea-coast and the desert, a procession of widening extremes, poorer rains combined with greater evaporation and harsher contrasts. It represents in fact, every step in the transition from the true Mediterranean type of climate to that of the hot, dry desert. has been studied. The general picture of the rainfall in the Levant is illustrated by fig. 3, Chapter I. Average rainfalls at Transjordan stations, on which the rainfall map is based, are in Table 2.

TABLE 2.

1	Statio	n	Rainfall	Station	Rainfall
			mm.		mm.
Kufr Som			 511	Shobek	267
Kherja			 482	Wadi Musa	207
Umm Oeis			 504	H.4 (I.P.C.)*	95
Remtha			 303	H.5 (I.P.C.)*	97
Mafraq (LP	.C.)		 201	Azraq	96
Taibeh			 527	Bayir	29
Knfr Yuba			 617	Rum	59
Irbid			 497	(Mudawwara)†	48
(Hawara)!			 267	Bosra	284
Deir Abu Sa	id		 552	Dera'a	274
Kufr Awan			 531	H.3 (I.P.C.)*	113
Kufrinii			 670	Samakh	335
Kitte			 651	Jisr Mujamie	392
(Khirbet Wa	hadne	e)†	 479	Jisr Sh. Hussein	286
Zerna			 142	Iisr Damia	208
Salt			 672	lisr Allenby	118
Amman			 318	Dead Sea, North	
Madeba			 400	Dead Sea, South, Camp	42
Hanud			 309	Dead Sea, South, Pans	
Mazar			 347	Salkhad	251
Tafilah			 249	Tel Or	402
Buseira			 283		

Estimated Average Rainfall for Period 1901-1930 for Stations in Transjordan, and near its borders.

•Pumping Station on Iraq Petroleum Company's oil pipe-line. •Based on two years' observations only.

*Doubtful.

(b) THE TRANSJORDAN BASIN.

The place occupied by Transjordan in the Dead Sea Basin is shown in fig. 5. This map shows also the rainfall stations within the country. It is important to note that the eastern boundary of the Dead Sea Basin (see fig. 9) includes all land within the boundary of Transjordan having an annual average rainfall above 200 mm., except a very small part, which has been named the Shera Catchment, in the south. For purposes of convenience, this latter small area is included in the general term "Transjordan Basin," which will be used to describe that part of the country—one-tenth of its total area—within which dry-farming can be carried on and to which also the hydrological investigations of later chapters will be applied.

(c) SEASONAL VARIATIONS.

The type of distribution throughout the year which has been remarked is typical of the Mediterranean type of climate, as is illustrated by Table 3, in which monthly normal rainfall for stations in Palestine, Transjordan, Egypt, Cyprus, Iraq and Iran (Persia) are given, with typical stations on the western coasts of North and South America, South Africa and Australia. The concentration of the year's rainfall into a season covering about half the year leads to a wet season having rainfall comparatively high in relation to the whole year's rain. This can be expressed by computing the ratio of the average fall in the wettest month to the annual total, or by plotting the one against the other as in fig. 10. In this figure are shown in distinctive points the records of some stations in Palestine and Transjordan

INDLE 0.

					Jan.	Feb.	March	April	May	June	July	August	Sept.	Oct.	Nov.	Dec.	Year
					mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
Haifa*			 	 	169	119	34	21	5	1	0	0	2	28	85	159	613
Jerusale	em*		 	 	160	148	90	40	6	1	0	0	1	11	53	131	638
Amman*	*		 	 	64	84	21	9	3	0	0	0	0	5	24	41	318
Alexand	Iriat		 	 	53	24	13	4	1	0	0	0	1	7	34	· 67	204
Cairo†			 	 	10	5	6	6	1	0	0	0	0	0	2	4	34
Nicosia [†]	t		 	 	66	43	40	22	30	13	2	2	5	22	55	77	376
Mosul [†]			 	 	49	81	38	48	13	1	0	0	0	9	54	49	333
Baghdad	d‡		 	 	28	29	9	11	9	0	0	0	0	4	32	23	157
Teheran	15		 	 	43	26	49	29	11	2	6	1	2	8	27	32	236
San Fran	nciscos		 	 	125	91	82	37	20	5	1	1	10	27	60	104	563
Valparai	iso§		 	 	0	0	10	11	92	144	107	69	31	11	8	5	488
Santiago	09		 	 	1	2	5	14	59	83	87	58	30	14	6	5	364
Bulaway	vo§		 	 	150	102	0	16	7	1	1	1	3	23	83	131	598
Derby (A	Austral	ia)§	 	 	199	154	109	37	21	15	5	-3	0	1	30	114	688

Distribution of Rainfall in the Year in Regions with a Mediterranean type of Climate and some Neighbouring Drier Stations.

*From Annual Report of Dept. of Agriculture. †" Climatological Normals," P.W.D. Egypt. ‡" Régime of the Rivers Euphrates and Tigris."
§" Manual of Meteorology."

||Estimated Normal, 1901-1930.

(f) INTENSITY OF RAINFALL.

Of correspondingly great importance is the question of intense rainfall, which has direct application in engineering works where drainage or the collection of water are concerned, and is also a fundamental factor in the problem of soil conservation. The only criterion of this characteristic which is available is the greatest rainfall in a day, and this has been collected for Palestine and Transjordan stations and for some other parts of the world in Table 6. For Transjordan stations the record is short and no doubt greater falls will in the future be recorded. Details for these stations are given separately in Table 7, from which it will be seen that many of the stations experienced their greatest fall in November, 1938, including Amman, for which there is a record of ten years. During this month also there were record falls in Palestine, and it seems likely that throughout Transjordan generally, the extremes recorded up to date are representative of a longer term of years than is actually available.

TABLE 7./

Station		Years	Estim'd average	Max. ra	iin in a month	Max. rain in a day			
		record	1901-30	Amt.	Mnth.and yr	Amt.	Mnth. and yr.		
				mm	mm		mm		
Kufr Son	n		4	511	191.0	Jan., 1938	79.0	7 Nov., 19	938
Kherja			4	482	252.0	Feb., 1935	85.0	4 Feb., 19	935
Umm Qe	is		4	504	222.0	Jan., 1938	70.0	8 Nov., 19	938
Remtha			5	303	175.0	Feb., 1935	55.5	4 Feb., 19	935
Taibeh			4	527	247.0	Jan., 1938	75.5	7 Nov., 19	938
Kufr Yul	ba		4	617	351.5	Feb., 1935	118.0	4 Feb., 19	935
Irbid			5	497	314.0	Feb., 1935	97.5	4 Feb., 19	935
Deir Abu	Said	·	5	552	313.0	Feb., 1935	86.0	4 Feb., 19	935
Kufr Awa	an		4	531	294.0	Feb., 1935	87.0	4 Feb., 19	935
Kufrinji			5	670	366.0	Feb., 1935	106.0	4 Feb., 19	935
Kitte			4	651	416.5	Feb., 1935	130.0	4 Feb., 19	935
Zerqa			4	142	76.5	Feb., 1938	36.0	7 Nov., 19	938
Salt			4	672	446.8	Jan., 1938	113.0	23 Feb., 19	938
Amman			10	318	190.8	Feb., 1927	79.4	7 Nov., 19	938
Madeba			4	400	195.0	Feb., 1935	78.0	14 Feb., 19	936
Hemud			4	309	146.5	Jan., 1938	46.0	11 Apr., 19	937
Mazar			4	347	165.5	Jan., 1938	67.0	6 Dec., 19	934
Tafileh			4	249	140.0	Jan., 1938	65.0	6 Dec., 19	934
Boseira			4	283	165.0	Jan., 1938	53.9	5 Dec., 19	934
Shobek			5	267	146.0	Jan., 1934	102.0	21 Jan., 19	934
Wadi Mu	sa		5	207	96.5	Jan., 1938	55.0	7 Nov., 19	938
Ma'an			4	58	18.0	Oct., 1937	19.0	5 Feb., 19	935

Monthly and Daily Rainfall Maxima: Record up to and including January, 1939.

As a means of indicating the tendency to extreme falls relative to the amount of rain, the ratio of the maximum fall relative to the amount of rain has been adopted, expressed as the ratio of the maximum fall in 24 hours to the average rainfall in the wettest month of the year. Following the averages for Palestine and Transjordan (see Table 6) are averages calculated for Cyprus, the Egyptian and Red Sea coast, the Sudan and the Nile Basin, Germany and India, while after this are given the normal expectancy of heavy falls in various parts of the United States of America, and lastly some records for individual stations in other parts of the world. Of these, Palestine, Transjordan, Cyprus and the Pacific coast of the United States belong to the Mediterranean type of climate. Both absolute and relative values of rainfall intensity appear to be less in Palestine and Transjordan than in the other regions. India has a tropical monsoon type of climate; the Sudan and the Nile Basin, on the whole, a tropical climate. The Egyptian and Red Sea coast, and the Iraqi stations, have a typically