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PREFACE

This report is concerned with providing four sets of

150 years of correlated artificial monthly inflows into

the Yarmouk River and the Lake Kinneret.

The generated data is used as the basis of a simula

tion study which ascertains the worthiness and priority

order of projects designed to increase the Kinneret

exploitation , a scheme conceived by the Department of

Long-Term Planning, Tahal.

Three uncertainty elements are encompassed by the

simulation. They are: (i) the question surrounding

the success of artificial rain, (ii) whether the

Jordanians will build a dam on the Yarmouk,and (iii)

whether Israel will release water from the Lake to the

Jordan. The most viable priority order of the projects

are selected under an off-on policy for each uncertain

event,yielding a total of eight possible futures.

In order to account for an increase in rainfall due to

cloud seeding over and above the two sets of inflows per

taining to the Yarmouk River and Lake Kinneret, a third and

fourth set of generated monthly inflows (related to Lake

Kinneret) were necessary. Two values of the annual mean

increase, together with its respective standard deviation

were thought sufficient in explaining the phenomenon.
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GENERATION OF MONTHLY INFLOWS INTO LAKE KINNERET AND THE YARMOUK RIVER

1. INTRODUCTION

A generation procedure was postulated to reproduce, on the average,

important statistical parameters of the historic monthly data of the

Kinneret and Yarmouk inflows. The available monthly data were collated,

in the case of the Kinneret, from December 1928 to November 1970 (see

reference (1) pp. 3-6), as shown in Table 1, and from December 1926 to

November 1962 for the Yarmouk, listed in Table 2. The inflows were

considered to be a sample from an underlying theoretical probability

distribution, and the generation of simulated flows was centered around

the production of a random number from a particular distribution, which

was transformed into a value of a monthly inflow by means of a linear

response function, dependent upon already evaluated simulated flows. The

parameters were chosen with a view to preserve the respective monthly

means, standard deviations and skewness coefficients, as well as the

cross-correlation coefficient (i.e. the correlation between the Kinneret

and Yarmouk inflows in a particular year) and the Lag 1 correlations

(the correlations between two successive monthly inflows into both the

Kinneret and into the Yarmouk). All these estimated parameters are given

as part of Tables 8 and 9.

2. SIMULATED KINNERET INFLOWS

The generation of monthly inflows into the Kinneret was based upon

a system of equations formulated for TAHAL by Kahan (see reference (1)

p. 24). Being autoregressive in structure, the number of lags introduced

into the model depended upon the conditional variance of the dependent variable.

These equations are given in Table 3. Coefficients of skewness, illustrating

the degree of asymmetry of the data, were calculated for each month, the

results of which are given in Table 4. Based upon the magnitude of

skewness, together with Goodness-of-Fit Tests, it was decided to use one

of two probability distributions as the underlying theoretical population

from which the historic samples were supposedly drawn, namely the symmet

rical normal distribution and the gamma distribution. The latter is asym

metrical, in this case skewed to the right, implying that the values greater

than the mean have a larger spread than those which are smaller than the

mean.
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All simulated inputs were generated by a random variable taken from

a normal distribution with zero mean and unit variance. For the months

which were considered skewed, namely, December, January, April, November,

it was required to transform this random variable into one following the

gamma distribution. It was determined in either of two ways, depending

on whether its skewness (not that of the corresponding month) was greater

or less than 3.0. Appendix 1 provides a means of calculating the skewness

of the random variable. If less than 3.0, the Wilson-Hilferty result,

which gives an approximate relationship between a normal random variable

and a Chi-square variable (and consequently a gamma variable, for the

family of gamma distributions includes the Chi-square distribution as a

particular case), could be put into effect, as follows:

Given that t. is a normal random variable for month j with zero mean

and unit variance, then:

* 2 ( Yi Ci V I 3 2t = —- \ i + -J—1 _ J ( £Yj Yj t 6 36 j Yj

Where ty. is a gamma random variable with zero mean and unit variance,

and Y is its coefficient of skewness, see, for example, Matalas((2) p. 938)

However, if skewness is greater than 3.0 the transformation, for small

values of t., will tend to produce values of t that are below the theo

retical lower bound of -2/y of the true gamma variable.*

Kirby (3) has developed a computer-oriented technique based on the

Wilson-Hilferty result which preserves the lower bound of the gamma dis

tribution. When confronted with a high coefficient of skewness, it was

to these values that we turned.

* According to the distribution of the gamma function on (0,1,Y.), the

theoretical lowest bound is given by -2/Y.. For example, given that
% j

Yj = 4 a value of tj of -5/g (which will be exceeded in absolute value
once out of five times, on the average) would result in t having a

value of -2/Y.. Thus for any t. less than -5/6 the lowest bound of

the gamma distribution would be exceeded.
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3. SIMULATED YARMOUK INFLOWS

The inflows of the Yarmouk were analysed in much the same way as those

of the Kinneret. Here, however, all but three months have high coefficients

of skewness (see Table 7, column (1) ) and in order for them to be main

tained, only an autoregressive model containing not more than one lag could

be envisaged.

However, a problem now presents itself. Although it was deemed suffi

cient for the sake of the analysis to maintain correlations of only one-lag

apart; in order to preserve the annual parameters, and in particular the

annual standard deviation, it was necessary to include all lags into the

model, providing they are significant, and thus to include the within-year

correlation terms. This is because the annual variance is made up of the

sum of the monthly variances, together with all the inter-month covariances.

This restriction applies to the months April and May, for in these

cases only, the multiple correlation coefficient** becomes significantly

larger if another lag is included in the model; however it was thought

that in the final analysis the advantages of obtaining a more exact co

efficient of skewness outweigh the inclusion of an extra term. Table 5

gives the equations resulting from an autocorrelation model. Using the

formula given in Appendix 1, the skewness of the random variables (t-y-j)
found in Table 5, have been calculated and are given in column (2) of

Table 7.

However, the cross-correlation, i.e. the correlation between the

Yarmouk and the Kinneret in a particular month, were not taken into

consideration. This was rectified by modifying the autocorrelation

equations of the Yarmouk to include the cross-correlations that were

found to deviate significantly from zero. By means of Fisher's trans

formation which is contained in reference (4), a value of r, the sample

cross-correlation coefficient, was calculated, as the maximum (within a

certain probability error) that the empirical values could take before

being considered large enough for the underlying populations to be (in

fact) correlated.

* Appendix 2(b) gives a method of maintaining the coefficient of skewness
when a certain inflow is dependent upon two variables. However, because
the correlation between the Kinneret and the Yarmouk would have to be

taken into consideration, the dependency at this stage is restricted to
a one-lag model.

** The multiple correlation coefficient gives the correlation between the
dependent variable and the other variables contained in the model. The
higher the correlation the better would be the fit.
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Fisher showed that if t= \^ • i? + r^ (1)
2 (1 - r)

Where N is the sample size (in the case of the Yarmouk N - 34),

then t is distributed approximately as Normal distributed on (0,1) under

the hypothesis that p (the theoretical cross-correlation) = 0.

At the 95% level, that is with a 0.95 probability of accepting the

null-hypothesis when correct, the result is significant if jtj ;1.96.
Substituting this value for t in Eq. (1) above, r was found to be signi

ficant when r > 0.34. Thus any positive value of the cross-correlation

less than 0.34 was taken as zero.

Appendix 2(a) shows what values the coefficients need to take in

order to maintain the appropriate parameters. Inclusion of the cross-

correlations affects, however, the coefficient of skewness that needs to
•• % %

be maintained, for it introduces random variables S., and !Lj for some
% J Y J

j = 1, ... , 12. Syj is the random variable that finally produces the
flow Yj and thus its skewness remains to be calculated. The final equa

tions which are used to generate inflows into the Yarmouk river are shown

in Table 6.

Appendix 2(b) yields the relationship between the skewness of Sv. and
<\. Yj
t , a comparison of which is found in col. (2) and col. (3) of Table 7.

Generation of Sy. was put into effect by a subroutine illustrated in

the computer programme in Appendix 4, which uses linear transformations on

Kirby's parameter values in order to maintain the coefficient of skewness

of S j and consequently that of Y*.

4. KINNERET WITH ARTIFICIAL RAIN FACTORS

As part of the could seeding experiments two more series were

generated. Based on inflows into the Kinneret, the two series denoted

by Yij (i = 1, —12; j = 1,2) have mean values of 10% and 20% respectively

more than the Kinneret inflows given by X^ with annual standard deviations

of the increase of 0.051 and 0.056 respectively. These values should be

considered only as estimates; for the experiment (at the time of writing)

is still in progress.
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Because of the inclusion of evaporation, the Kinneret inflows take

negative values, particularly for the summer months. In order to increase

every inflow by a certain amount, (i.e. both positive and negative flows),

the absolute value of X. must be included in the model. The monthly flows

Y . were then calculated from the equation

Y. = X. + Ix. 'y . + a. X. t„, where i = 1,...12 and j = 1,2,
ij l • i j j l i'

where u = mean value of the increase in artificial rain,
J

(yx = 0.1, w2 = 0.2)

o = monthly standard deviation of this increase,

(a , a_ to be calculated)

and t = independent normal random variable distributed on (0, 1)

It remained to calculate the monthly standard deviation of the in

crease in both series, for, although the annual deviation is small, the

monthly values are known to fluctuate. This can be done, provided that the

inflows in every month increase according to the same distribution, that

is with a fixed mean (0.1 and 0.2 respectively) and a fixed standard

deviation (a., a. respectively), within the year.

The problem is then reduced to solving a , a„ in the following

equations, which are set up in order to equate the variance of the annual

flows with that of the sum of the monthly flows.

Var {X(l«l + 0.051t)}= Var { I (X + [x.|o.l + |x \a t ) }
(2)

.rH.and Var {X(l«2 + 0.056t)} = Var { I (X. + |X I 0.2 + |x.|o«t.) }
,ii' ' i1 2 i

12 l
where x = Z X. > 0

i=l X

and t, t. i = 1,...,12 are all independent random variables

distributed as normal on (0,1).

However, the complications involved in solving the equations seem

to outweigh the benefit, for it is possible to approximate them by a

simpler set, as follows:
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•Vi ^

Var {X(l.l + 0.051t)} = Var {ZX± (1.1 + a^)}

(3)

and Var {X(1.2 + 0.056t)} = Var {ZX± (1.2 + a2t±)}

It was found (see Appendix 3) that a. and a2 can be solved by using

the relationships below:

0.051 /_Jar_iXL±J_J2_ =()!582
1 V i Var (X±) HE2 (X±)

/ Var (X) + E* (X)
VJ Var (X.,) +

_E_va2 u.u^o y- var — - ^ e2 (x^

Thus Y of Eq. (2), is generated by using the relationships:

Yil =xi + lxil 0A + lxil °'582 'i

and Yi2 =X± + jX±| 0.2 + |X±| 0.2 tj.

Where i = 1,...,12

t., t' are both standard normal random variables.

5. THE GENERATION PROCESS

The twenty-four derived equations were used as input data for a

programme designed to run on an IBM 1130 computer, which is given in

Appendix 4. Two subroutines were used. The first - part of the system

software - generated random numbers which followed a standard normal

probability distribution, whereby a starting value is read into the

computer for the process to begin. The second was concerned with

maintaining skewness coefficients into the Yarmouk; transforming the

normal random variable into a gamma random variable. In this way a

sequence of 200 years of synthetic monthly data of Kinneret and Yarmouk

inflows were generated. Due to the fact that the inflow in the Kinneret

for December was taken as dependent upon the flow in November, an initial

value - the mean of November - was used for starting the generation. Con

sequently the first fifty years of generated results were discarded in the

hope that the remaining series would be independent of any starting value.
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The magnitudes of the standard deviations of the historic data imply

that a long sequence of data is needed for the generated parameters to

converge to the historic ("true") values. For the purpose of the main

body of the study, it was thought impractical to take more than 150 years

of generated data, and due to this constraint, convergence was not auto

matically effected by the model.

Different initial values needed to generate the random variable were

fed into the computer in order to compare the statistical properties of

the samples. Fluctuations were produced, as anticipated, in the para

meters of the generated sequence. This was particularly evident in the

monthly standard deviations and coefficients of skewness.

Because the annual results of the Kinneret and the Yarmouk were con

sidered the more important of the statistical parameters, the generated

sequence was chosen to correspond to these values as closely as possible.

Tables 8(a), 8(c) and 9 give a comparison between the historic and gener

ated parameters of the Kinneret and the Yarmouk, while Table 8(b) contains

the generated means and standard deviations of the two Kinneret series with

average artificial rain increases of 0.1 and 0.2.

The first time that generation was carried out, the average of the

annual Kinneret values with a 0.1 increase was 630.4, while against this,

1.1 multiplied by the average of the annual basic Kinneret flows gives a

value of 621.7. The standard deviation should have been (see Eq. (3.4)

in Appendix 3) 263.4 but the generated result was 269.6. Similarly, the

increase of flows into the Kinneret by an added factor of 0.2 should have

resulted in a mean of 678.2, and in a theoretical standard deviation of

285.3 (found again from Eq. (3.4) in Appendix 3), while the artificial

rain series generated a mean of 689.5 and a standard deviation of 292.4.

The annual means of the two series were considered the most important

parameters to be preserved under generation, and so each inflow of every

month was multiplied by 622/630 and 678/690 respectively (when the flow

was negative it was divided by these amounts). In this way the annual

means were reduced to the theoretical means and the annual standard

deviations were also reduced by the same amount.

By this procedure a second set of series was generated, yielding

monthly means and standard deviations which are found in Table 8(b).
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6. CONCLUSIONS

Tables 8(a) and 8(c) show that the generated monthly and average

means and standard deviations of inflows into Lake Kinneret and into the

Yarmouk river follow very closely those of the historic data. It should

be noted however, that a large monthly historic variance gives rise to a

less exact generated sequence, because, in such cases, a period of 150

years is not long enough to assume that the generated values tend towards

the "expected values" - the values of the parameters that would be reached

had the number of sample outcomes become infinite.

The correlation coefficients between and within the two systems - as

shown in Table 9 - converge quite quickly for in only four cases from a

total of twenty-five are the generated correlations seen to be signifi-

cantly different from the historic ones.

The main difficulty, however, in this generation scheme concerns

itself with the monthly coefficients of skewness. Previous generated

inflows, as noted in Section 5, fluctuated a great deal for different

samples of 150 years. December, for example, had a coefficient of

skewness that ranged from 5.8 to 1.0, showing that these coefficients

are very unstable for such small samples, and have a much slower rate

of convergence than the other parameters. Even so, the generated results

can still be considered indicative of the values governed by the historic

sample.

It should be remembered that the analysis has been carried out with

the historic series taken as the "true" sets of values. This however is

a fallacy that generation techniques, by necessity, cannot avoid. The

historic data of 42 years and 36 years for inflows into Lake Kinneret

and Yarmouk river respectively should* only be considered a sample from

a theoretical infinity of observations and, as such, only reflect ap

proximations of the underlying means, standard deviations, correlation

and skewness coefficients. There is no evidence to support a principle

inherent in the model that the natural phenomena over the past 50 years

(say) will repeat itself - even in the mean. Consequently as long as

it can be shown statistically (i.e. with a certain degree of probability)

that the generated and historic results could have emanated from the same

population the generated values should be considered adequate.
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HISTORIC MONTHLY INFLOWS INTO LAKE KINNERET

(in mc m )

Year Dec Jan. Feb. March April May June July Aug. Sept. Oct. Nov.

1928/29 92.13 143.75 186.64 138.44 102.89 47.53 36.18 22.84 18.01 11.53 11.43 49.10

1929/30 84.12 100.54 136.80 77.16 46.76 29.29 16.80 7.73 5.81 2.50 7.56 21.99

1930/31 69.30 101.57 173.23 117.72 72.70 39.57 25.70 13.88 10.77 5.64 9.00 20.03

1931/32 56.75 47.02 122.68 70.05 47.04 27.87 13.49 3.52 0.93 -1.27 7.56 19.36

1932/33 26.75 42.86 25.35 20.69 12.21 -3.71 -11.24 -15.66 -22.52 -15.58 6.33 0.80

1933/34 16.93 73.71 131.91 75.27 47.73 25.19 7.54 -2.87 -7.62 -1.62 1.79 8.69

1934/35 106.72 109.61 152.90 106.10 101.43 47.40 33.16 18.25 13.07 7.23 11.94 32.78

1935/36 52.53 82.23 103.03 84.15 57.35 33.92 19.73 10.18 7.69 4.24 8.17 58.20

1936/37 97.70 130.27 96.66 78.36 61.41 34.77 21.61 11.32 8.40 4.13 9.82 24.24

1937/38 40.98 126.11 149.55 143.02 70.50 46.28 30.75 17.97 13.74 8.38 10.15 56.38

1938/39 61.64 95.63 126.88 125.27 69.46 37.98 24.58 13.17 9.67 4.89 8.75 29.58

1939/40 67.24 141.61 111.94 101.94 65.91 36.76 24.16 13.46 10.50 5.75 10.68 30.40

1940/41' 68.79 98.00 128.02 140.32 65.02 35.96 22.89 12.18 9.53 5.00 8.75 18.98

1941/42 76.16 106.70 99.58 115.57 66.30 37.02 24.30 13.32 10.50 5.86 13.89 47.68

1942/43 48.00 130.86 103.71 168.35 168.11 47.39 34.74 21.18 16.48 10.12 11.02 23.35

1943/44 49.53 135.58 102.48 108.44 62.45 36.67 23.88 13.74 11.18 6.49 9.25 102.85

1944/45 111.92 119.29 149.82 103.73 77.98 39.98 28.86 18.25 15.18 9.71 11.63 32.70

1945/46 60.97 56.97 129.19 88.51 52.93 37.89 24.30 13.03 9.53 4.78 8.54 17.93

1946/47 46.18 117.07 84.99 68.37 43.57 25.19 11.33 2.78 0.46 -1.27 5.31 18.69

1947/48 31.76 26.42 155.77 159.13 70.96 34.49 17.69 5.12 1.56 -1.27 5.24 19.36

1948/49 69.93 123.28 144.30 168.16 193.48 49.86 35.79 20.48 14.79 8.69 12.28 17.28

1949/50 67.08. 147.13 108.98 95.07 65.20 47.41 21.56 8.38 3.69 7.03 6.78 29.11

1950/51 22.10 34.23 45.96 51.97 37.04 5.26 4.44 -6.94 -10.32 -2.26 6.83 18.04

1951/52 145.65 83.89 169.66 158.59 60.20 33.57 24.38 11.57 5.40 -6.09 -0.05 10.49

1952/53 36.01 91.86 116.06 175.98 118.80 44.03 36.50 12.84 9.20 5.71 17.38 60.20

1953/54 92.79 182.36 266.97 110.29 21.66 58.10 36.63 17.33 19.75 16.86 19.26 46.16

1954/55 74.34 40.58 56.37 50.58 40.35 22.63 4.86 -0.81 -9.78 -4.05 -6.43 25.41

1955/56 105.79 140.82 91.07 100.11 55.15 36.90 20.61 19.28 10.66 -3.35 11.69 16.92

1956/57 45.16 51.04 104.70 126.54 55.71 44.12 17.87 4.60 1.88 -0.41 5.46 21.10

1957/58 93.81 127.93 99.89 55.35 35.16 19.40 3.33 1.83 6.11 0.04 6.42 7.21

1958/59 39.18 50.31 73.49 90.86 42.68 26.53 6.46 4.25 0.46 1.93 2.54 16.58

1959/60 9.12 72.73 32.48 42.66 31.50 12.40 -4.72 -14.74 -20.10 -17.77 -9.16 12.68

1960/61 14.25 24.16 101.44 37.04 38.57 15.24 -7.16 -11.12 -22.16 -16.39 -3.96 14.76

1961/62 108.83 96.45 108.76 52.76 27.34 14.60 -2.59 -10.68 -8.90 -7.53 4.62 4.73

1962/63 51.96 94.73 122.58 95.26 63.31 58.57 15.62 0.17 -2.26 -1.19 14.10 24.19

1963/64 34.36 28.60 176.45 167.14 77.87 43.25 8.90 2.33 1.81 0.29 5.59 67.02

1964/65 57.04 134.27 126.45 69.90 67.80 28.70 5.25 -0.08 -4.98 0.35 11.44 15.63

1965/66 31.71 78.98 89.44 64.35 38.35 6.08 1.14 -15.42 -10.86 -7.43 11.72 7.12

1966/67 58.61 24.19 133.79 203.11 106.76 59.12 30.73 9.23 3.85 7.75 15.J.2 31.18

1967/68 61.79 225.64 146.36 91.82 62.69 36.51 12.27 -2.86 -5.58 8.22 5.43 34.07

1968/69 93.23 443.82 192.91 208.25 115.99 71.47 41.55 14.00 14.61 25.14 29.03 36.42

1969/70 42.35 122.04 58.97 169.75 70.32 34.27 14.46 -2.49 -4.09 3.76 5.45 34.07
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TABLE 2: HISTC)RIC 11flPUTS INTO THE YARMOUK

(MCM)

Year Dec Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov.

1926/27 33 48 230 85 43 13 22 26 19 18 23 19

1927/28 14 15 91 28 12 13 7.5 13 16 19 20 18

1928/29 18 58 330 110 110 100 50 24 14 18 27 28

1929/30 21 30 83 41 26 27 28 25 25 24 25 30

1930/31 40 88 210 73 35 30 23 21 20 16 16 16

1931/32 22 20 130 27 23 24 23 24 24 22 20 20

1932/33 22 22 43 20 17 17 13 17 18 22 19 20

1933/34 21 22 67 28 25 25 25 25 25 26 23 22

1934/35 39 62 250 36 40 25 20 24 24 21 23 25

1935/36 28 26 31 24 21 21 20 21 22 22 24 32

1936/37 55 130 90 30 26 22 21 20 20 20 25 32

1937/38 24 69 160 78 27 26 22 21 21 20 22 40

1938/39 31 50 84 96 42 19 18 18 19 20 18 21

1939/40 32 160 62 45 20 17 16 18 19 19 22 24

1940/41 33 94 76 84 25 20 18 19 18 18 19 21

1941/42 33 110 82 110 27 20 17 17 18 18 19 22

1942/43 21 96 90 110 89 28 22 22 22 27 39 27

1943/44 24 120 59 34 26 23 20 22 26 25 26 39

1944/45 69 240 160 68 29 21 20 19 21 21 24 23

1945/46 25 25 130 46 20 19 13 11 14 16 19 19

1946/47 23 80 78 24 14 14 12 11 12 12 14 20

1947/48 24 27 110 100 24 20 18 18 18 17 18 19

1948/49 33 60 86 81 81 20 19 19 18 18 19 19

1949/50 35 77 63 58 37 23 20 21 20 19 20 21

1950/51 23 26 36 23 20 18 8 18 17 17 27 23

1951/52 150 100 200 160 25 19 18 18 18 22 23 24

1952/53 26 58 100 220 76 16 15 15 16 17 23 27

1953/54 34 160 220 50 46 22 19 20 21 ! 22 25 25

1954/55 29 29 24 30 23 20 20 21 22 > 21 22
1

30

1955/56 63 100 57 43 28 26 22 22 22 |22 23 22

1956/57 25 40 68 59 24 19
-

19 20 21 I20 22 22

1957/58 36 110 33 24 22 | 23 21 19 20 s 21 23 21

1958/59
i

23 27 44 42 23 20 19 19 20 1 21 22 21

1959/60 22 27 22 23 21 I 16 15 18 18 19 19 22

1960/61 23 28 53 24 : 21 1 27 18 18 18 i 18
I

22 23.5

1961/62 78.8 52.7
t

74.4 27.8 18.0 18.6 18.2 17.8 ;i8.i I 19.8
_i

20.7 16.3
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TABLE 3: EQUATIONS USED FOR THE GENERATION OF INFLOWS INTO THE KINNERET

December Xl

January X2

February x3

March X4

April X5

May X6

June x
x7

July X8

August X9

September X10

October

November

11

12

= 48.769 + 0.572X
12

= 23.961 + 1.275X,

= 78.033 + 0.109X,

= 39.431 + 0.444X,

8.685 + 0.564X,

= -4.023 + 0.082xc

= -12.255 + 0.723X
6

= -7.921 + 0.796X
7

= -3.198 + 0.998X
8

= -8.422 + 1.642Xr

6.371 + 0.596X
10

-'Xj
+ 34.287U .

Yl

+ 51.073U 0
Y2

+ 0.468X. + 39.314U

+ 0.131X2 + 38.805U

+ 24.044UC

+ 0.135X. +
4

0.097X,

+ 0.068X2 + 7.415U

+ 0.074X5 + 2.947U

+ 2.464UQ
o

+ 2.072U9

+ 1.264Xn _ 0.325X

+ o.556x1 +

+ 0.083X +

1.465U

3.9591J

10

11

^
= 24.489 + 1.195X + 16.982U

Y.12

Where X,

and
Yl

and U,

Flow into the Kinneret in month i

Random variable of month i from a gamma distribution
with zero mean and unit variance

Normal random variable of month i with zero mean and

unit variance
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TABLE 4: COEFFICIENTS OF SKEWNESS FOR EACH MONTH OF INFLOWS

INTO THE KINNERET

Month
Coefficient of skewness

of inflow

December 1.24

January 2.85

February 0.49

March 0.36

April 1.60

May 0.27

June 0.30

July 0.54

August 0.77

September 0.24

October 0.07

November 1.63
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TABLE 5: INPUTS INTO THE YARMOUK BASED UPON AUTOCORRELATION

34.799 + 24.316 t
Yl

^

40.332 + 0.826Y1 + 46.315 t 2

3

Y4

= 103.511 + 72.264 t
Y3

10

11

12

Where:

Y, =

Yi

t,

^

35.089 + 0.236Yo + 40.479 tY4

Or

14.949 + 0.302Y. + 17.877 t
Y5

10.295 + 0.389Y, + 11.025 t
Y6

9.595 + 0.426Y. 3.275 t
Y7

9.819 + 0.781Y. 0.238Y,
-'v*

+ 2.142t
8

^

6.605 + 0.664Yg + 2.135 t

5.131 + 0.757Y„ + 1.775 t
10

4.342 + 0.891Y1rt + 3.224 t
10 LYH

a.

9.296 + 0.652YU + 4.955 tDY12

Flow into Yarmouk in month i

Random variable of month i from a gamma distribution
with zero mean and unit variance

Normal random variable of month i distributed with
zero mean and unit variance
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TABLE 6: EQUATIONS USED FOR THE GENERATION OF INFLOWS INTO YARMOUK

December Yl
= 2.831 + 0.493X3^ + 16.566S ,

Yl

January Y2
= -13.788 + 0.825Y + 0.507X2 + 29.413S „

Y2

February Y3 = -46.189 + 1.247X3 + 44.949S _
Y3

March Y4 = -28.084 + 0.235Y3 + 0.592X4 + 28.972S .
Y4

April Y5
= -6.452 + 0.302Y.

4
+ 0.311X5 + 13.735S „

Y5

May Y6
= 21.181 + 0.388Y5 + 0.312X,

6
+ 9.762S ,

Y6

June Y7 = 9.596 + 0.425Y6 + 3.275S ,
Y7

|July Y8 = 11.059 + 0.780Y - 0.237Y, - 0.192Xg + 0.453Sg

|August Y9
= 6.605 + 0.664Y.

0

+ 2.135S9

iSeptember Y10 = 5.129 + 0.757Y9 + 1.775^0

October Yll
= 4.345 + 0.890Y1(. +

1 3-224Vi

November Y12
= 3.496 + 0.652Yl;[ + 0.205X12 + 2.755S 10

Yl2

jWhere Xi
= flow in month i into the Kinneret

and where Yi = flow in month i into the Yarmouk

! and = random variable of month i from a gamma
distribution with zero mean and unit variance

, and

I

si normal random variable of month

zero mean and unit variance

i distribution with
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TABLE 7: COEFFICIENTS OF SKEWNESS ASSOCIATED WITH THE YARMOUK

^\Variables*

iMonth ^-^
Yi
(1)

Si
(2) (3)

December 3.31 3.31 8.94

January 1.38 1.51 0.89

February 1.36 1.36 5.65

March 1.82 2.23 5.82 *

April 2.15 3.41 6.34

May 4.95**

(3.4)

9.13

(5.95)

12.60

(8.21)

June 2.41 -8.36

(1.02)
-8.36

(1.02)

July -0.47 0.0 0.0

August -0.07 0.0 0.0

September 0.09 0.0 0.0

October 1.69 3.70 3.70

November 1.32 1.69 4.27

* Y. is inflow into Yarmouk in month i; for t , S see

Tables 5 and 6.

** The coefficient of skewness of May was found to be so high (4.95)
as to produce large negative coefficients in June, for the two
months are interrelated. Because of difficulties in maintaining
negative coefficients, a value of 3.4 was introduced (instead of
4.95) as the maximum that could be utilized in practice; this
resulted in the values stated in brackets.
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TABLE 8(a): COMPARISON BETWEEN THE HISTORIC AND GENERATED STATISTICAL

PARAMETERS OF THE KINNERET

(MCM)

Month

Dec.

Jan.

Feb.

Mar.

Apr.

May

June

July

Aug.

Sep.

Oct.

Nov.

Annual

KINNERET

M n Standard deviation Skewness coeff.

Historic Generated j Historic Generated i Historic Generated

64.8

106.5

120.0

106.6

68.8

34.9

18.0

6.4

3.2

2.2

8.0

28.1

567.6

63.7 36.1 35.8

106.1 68.7 59.4

122.4 45.3 44.0

107,6 46.3 50.3

66.9 35.5 31.6

34.5 15.3 15.8

17.5 13.1 13.4

6.2 10.6 11.0

3.1 10.7 11.2

2.3 8.2 9.2

7.5 6.9 7.5

27.2 19.6 17.7

565.2 237.7 235.9

1.2

2.8

0.5

0.3

1.6

0.3

0.3

0.5

0.8

0.2

0.0

1.6

0.6

0.8

1.0

-0.1

-0.1

0.2

0.1

0.0

-0.1

-0.1

0.0

0.0

0.8

0.7
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TABLE 8(b): THE GENERATED STATISTICAL PARAMETERS OF THE KINNERET

WITH ARTIFICIAL RAIN FACTORS

(MCM)

Month

10% increase in Kinneret inflows*
1

20% increase in Kinneret inflows**!

Mean
Standard

deviation

i

Mean
Standard

deviation

Gen- Theo-

erated retical

Gen- Theo-

erated retical

Gen- Theo-

erated retical

Gen- Theo-

erated retical

Dec. 70.2 55.8 76.2 60.9

Jan. 119.4 86.7 129.7 94.7

Feb. 140.7 92.3 152.9 100.8

Mar. 115.2 84.9 125.1 92.6

Apr. 69.4 57.5 75.3 62.8

May 36.3 26.4 39.3 28.9

June 20.2 20.1 22.0 21.7

July 8.1 12.7 9.6 13.4

Aug. 3.1 12.0 4.0 12.4

Sep. 2.7 9.7 3.4 10.1

Oct. 7.3 9.3 8.0 10.0

Nov. 29.6 25.6 32.2 29.6

; Annual

i

622.1 621.7 266.4 263.4 677.3 678.2 287.6 285.3

* The factor 1.1 denoting the increase in flows has a standard
deviation of 0.583 per month

** The factor 1.2 denoting the increase in flows has a standard
deviation of 0.641 per month
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TABLE 8(c): COMPARISON BETWEEN THE HISTORIC AND GENERATED STATISTICAL

PARAMETERS OF THE YARMOUK

(MCM)

Month

Y A I. M 0 U K

M e
5

a n

|
Standard deviation

1
Skewnes 3 coeff.

Historic Generated Historic Generated Historic Generated

Dec. 34.8 34.6 24.3 23.3 3.3 1.6

Jan. 69.1 70.8 49.9 52.7 1.4 0.7

Feb. 103.5 106.4 72.3 65.3 1.4 0.5

Mar. 59.5 58.5 43.4 46.8 1.8 0.6

Apr. 32.9 31.6 22.0 25.1 2.1 0.8

May
i

23.1 22.6 13.8 11.3 4.9 3.2

T
June 19.4 19.8 6.7 6.1 2.4 2.0

July 19.5 20.0 3.5 3.5 -0.5 0.4

Aug. 19o6 20.0 3.1 3.2 -0.1 0.2

Sep. 19.9 20.1 3.0 3.1 0.1 -0.2

Oct. 22.1 22.0 4.1 3.6 1.7 0.4

Nov. 23.7 23.2 5.6 4.8 1.3 0.9

Annual 447.2 449.5 155.7 162.0 0.9 0.2

,-i
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APPENDIX 1

CALCULATION OF THE COEFFICIENT OF SKEWNESS OF THE RANDOM VARIABLE

IN A SINGLE REGRESSION MODEL

An autoregressive Lag 1 equation which will preserve, after large-sample

generation, the means, standard deviations and autocorrelation coefficient

of an inflow Xj, in month j, is given by:

-)ha. (1.1)XJ = UJ +VT Px (XJ-i""j-i) +*4 (1"Px?) °i
where u, is the mean of Xj, a. is its standard deviation, px is the
Lag 1correlation coefficient, t. is a random variable distributed as N (0,1)

Let X. be an input following a skewed (gamma) distribution, with coefficient

of skewness Y(Xj),

E {(Xj-y )3>
where y(X.) = o t/93 [E(Xj-pj)2j3/2

The skewness can be maintained by providing for the generation of tj to be

independent of Xj , and from a standard gamma distribution with skewness

coefficient Y(tj). V(X^) is found empirically from the data, from which
Y(ti) is to be estimated.

Making a transformation in Eq. (1.1):

<x.r *i>
Z^ =

JJ °j
in order for Y(X.) = E(Z^3) to hold.

Equation (1.1) becomes
- hH=pxVi +fcJ (1"px2>" (1'2)

Cubing both sides and taking expectations results in

E(Z.3) -pY< E(Z. .3) +E(t,3) (1-P„2)3/2

<\j 'Xjfor E(tj Z^2) =E(tj2 Z.x) -0
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.•xj m _ nN ^.'Xj m«_/n n,,because t*, Z , are uncorrelated, and E(t. Z . ) " E(tj )E(Z . )= 0,

where m, n take the value of 1,2 but not simultaneously.

Therefore,

. E (Z,3) - py3 E (Z. ,3)
E(* 3) - * X/2 -1"1 (1.3)
j (1 - pv2)3/2

or, equivalently,

Y(X.) - p 3 Y(Y .)

(. - px2>

Thus the skewness of the independent Variable can be calculated.

It is maintained by using some technique for generating random values

from a gamma distribution with mean zero, variance unity and coefficient

of skewness Y(tj), as given above.
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APPENDIX 2

A TWO-VARIATE MODEL

(a) Preserving the Appropriate Correlations

Having set up equations of the form given by Eq.(l.l), illustrated in

Table 5, the autocorrelation coefficient between inflows in a given month

and the previous month in the Yarmouk is preserved.

However, in order to maintain the cross-correlation, as well as the

coefficient of skewness for that particular month, a modification of the

equation is deemed necessary.

A standard autoregressive model is of the form (as before) is

a

'Xj

where p/„ .gives the correlation between Yj and Y . and where t.* is -

typically - an independent gamma random variable with zero mean, unit

variance and coefficient of skewness ^(tj) as found in Equation (1.4).

Typically, because three months given by the empirical data follow *

normal distributions, and consequently have zero coefficient of skewness.

With the object of preserving the correlation between inflows into

the Kinneret in a particular month (X.) and inflows into Yarmouk for that

month (Yj), Eq. (2.1) can be modified by dropping the condition of in-
'Xj 'Xj

dependence upon tj, and so E(Xj.t.) must be chosen in such a way that

the correlation between Xj and Yj will be maintained under generation.

Thus, multiplying Eq. (2.1) by X., and taking expectations, we have

that

E(XjYj) =y 'E(Xj) +e(YNE[Xj(Yj_1-p )] —J-+ E(Xjtj)(l-p (Y ,2)% (2.2)
J J J~* 1—1 J J

Using the definition E(XjYj) - E(Xj)E(Y;j) = Cov (Xj.Yj) (2.3)

and yv = E(Y.)

and where we have replaced t.. (an independent random variable) by tj,
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Eq. (2.2) can be put in the form:
CTY.

Cov (Xj.Y-j) «p(Y )Cov(Xj,Yj_1) ^+E(Xj.tj) (l-p^..)2)3* av (2.4)
Yj-1 j

Now, by definition, Cov (Xj,Y.) = <?x ay Corr (Xj,Yj) (2.5)

where Corr (X.,Y.) denotes the correlation between Xj and Y..

Substituting, for the sake of parsimony, P/x Y } ^or Corr ^Xj'Yi^>

Eq. (2.4), using correlation coefficients, becomes

Hp(Xj Yj) ^ • vw^vi*+ E%v <i-**v2); (2-6)
Therefore, the relationship between Xj and tj must satisfy Eq. (2.6)

Rearranging the equation we find that

«*i<v*\] 1.] "v:v,ir":[ [p(xi v -fOj)^a Yi-i)i ]

Since tj is a variable with mean zero, and variance unity, the

definition given by Eq. (2.3) is modified to read

Cov (Xj,t.) = E(Xj tj)

and, according to the definition of Corr (Xj,tj)

Corr (Xj.tj) = Cov (Xj,tj)/ax .1

Denoting this correlation by R, and using Eq. (2.7) R is defined as

P

R - "

(¥j)-PCV p(xjVl) (2_8)
2\%(1 - p(Yj )z)

It follows that if R takes the value above,then the cross-correlation

between Xj and Yj will be preserved.

A linear regression between tj and Xj can therefore be set up in the form:

v£- (xr%> +̂ (1~r2)* ' (2'9)
; Xj

where Sj is an independent random variable on (0,1).
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Substituting this value for t. in Eq. (2.1) it might be thought that the

Lag 1 correlation, the cross-correlations, and the lagged cross-correla

tions (viz. Corr (X^,Y. ,)),would be maintained. However, the new

definition of t.. introduces a spurious factor into the correlation

between Y. and Y. ,. This is due to the fact that because of the
j 3-1

correlation between X. and Y. ,, there is necessarily a correlation

between t. defined by Eq. (2.9) and Y._. which - in order tc preserve

the correlation between Y. and Y . - should be zero.

This can be explained directly from the equations as follows. Multiply

Eq. (2.1) by Y , and take expectations:

J J J j_l

+E(tjYj„!) (l-p(Y.)2 )h oy (2.10)J J i j Yj

Noting that a 2 = Var (Y .) and by definition
j-1 J"

Var OT^) =E[Y._1(Y._1-yY__i)], .

then, if E(t .Y .) = 0, Eq. (2.10) would reduce to:

E(Y, Y. ) - Uy Uy = P(Y ) o o ., (2.11)
2 2 j Yj"l J J J"1

A similar expression to Eq. (2.3 ) defines Cov (Y.,Y._.), whereby

Eq. (2.11) becomes

Cov (Y Y ) = p(Y ) ay ay
33 j j-1

Now,p(y )Oy ay is in fact the definition of Cov (Yj,Y. .)
j Yj *j_i J_i

(compare to the definition given in Eq. (2.5) ) and

consequently the Lag-one correlation between Y. and Y._. is maintained.
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However, with t. defined in Eq. (2.9), E(t.Y ) is in fact not zero,

since, multiplying it through by Y . and taking expectations we find that

E(Yj_1 •tj) =J-E [Y (X -ux )] +E(S Y Ml-R2)1* (2.12)
Xj 3

S. is an independent random variable distributed on (0,1) and thus

E(Sj Y. 1) = E(Sj) E(Yj_p =0 •E(Yj_1) =0

But, E[Yj_1(Xj-uj)] = Cov (T.jA) =p(X Y x) *°x °Y

and therefore, E(Y. .t.) = R p(X.Y. .) a__ . . . .
* j-1 j j j-1 Y ., which is a non-zero

quantity as claimed above. To prevent this spurious correlation,

tj must be defined as a variable, in such a way that E(tjXj) = R

(as above), but with E(tj«Y ,) = 0.

This can be achieved by selecting coefficients a,, a„ in Eq. (2.13)

(below) that satisfy these relationships.

Consider a linear model of the form:

t. «-J_ (X -u )+—2— • (Y. ruY )+(l-MC)1* S (2.13)3 °Xj j xi °Yj_1 J_1 Yj-1 j

where MC represents the multiple correlation coefficient, denoting the

reduction to the variance of t^ by the addition of Xj and Y . to the

model. To standardize the variables a substitution can be made as

follows:

xj Yj-i

Thus, U. and V. -. are distributed with zero mean and unit variances.

Now Eq. (2.13) can be rewritten as

t. -Ul Uj +a2 V. j+S (l-MC)55 (2.14)
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In order to solve a , a and MC, Eq. (2.14) is multiplied by U. and

V, 1 respectively, and expectations are taken, resulting in:

E(Ujtj) =Oj E(Uj2) +a2E(U.Vj_1)+E(UjSj) (l-MC)^ 7

E(VJ-ltJ) =aiE(UjVj-l)+a2 E(Vj-l2) +E(^JVj-l) V-W^ <•
From the above discussion we can summarize as follows:

(1) E(Ujtj) = R and E(V._1t ) = 0

(2) E(U 2) = Var (U.2) = 1 and E(V£.,2) = Var (V._1) = 1

(3) E(UjSj) =E(Uj) E(Sj) and tQr,jS) =ECV^) E(Sj)

for S. is independent of U. and of Vj.

And so E(UjSj) = E(V ^S.) = 0

and (4) E^V.^) = Corr(U..,V )=p(uv) (say)

(2.15)

y

Using these properties, the set of equations given by Eq. (2.15) can

be rewrtitten as follows:

R= ai+a2 P(UV)

° = ai P(UV) + a2

Therefore, a, = -
1 1 - P

R

(UV)

- R P(UV)
and a =

2 l-o 21 P(UV)

(2.16)

Thus if a and a are chosen in this manner E(U.,t..) and E(Vjtj) will be

preserved under generation.

In order to evaluate the multiple correlation coefficient, multiply
'Xj

Eq. (2.14) by Sj, and take expectations:

EUjSj) =E{(UjUj +<*2V j_ +Sj (l-MC)*2) Sj} (2.17)
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Since Sj is independent of Uj and V\, jand E(&.) -0this reduces

E(t,S.) =E(S 2) (1-MC)3* .
J J J

Also, E(s.2)=Var (&.,) -1 ,
J J

;•

^ j, (2.18)
then E(tS) = (1-MCK

>Xj

Alternatively, Eq. (2.17) can also be expanded by substituting for Sj,

resulting in

* ( ti (t^-otiUj-a^V, ,)
E(t,S ) = E)-1 •' Hi 21

33 b (1-MC)*

2Substituting R for E(t U), 0 for E(t V, j) and 1 for E(t. )
we find that

E^S,) = 1 k (1 - «.R) (2.19)
3 * (1-MC)* 1

Equating Eq. (2.18) with Eq. (2.19) through E(tjSj),
we obtain

(l-MC)5* =—1—r (1 - «.R) 5
(1-MC)* *

and so MC = a R

Transforming back to the original variables, and substituting for

a , a and MC, Eq. (2.13) becomes:

R Rp<Xi.Vl)t, -^ (x.-yv ) - —J—^ ^-i-r^Y }+
3 oY [l-p2(X Y )] 3 Xj a U-p2(x,Y. .)] 3 x j-1

j 3 3 x i-1 ^ 3~

1 - R it •*

+! ^sv?' Sj
with R evaluated in Eq. (2.8 )•
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Thus Eq. (2.20) combined with Eq. (2.1) preserves the appropriate

correlations, viz. Corr (X.,Y .), Corr (Y ,Y. ,), Corr (X.,Y.).

It should be noted that the result of Eq. (2.20) being substituted

into Eq. (2.1) is in fact the common regression equation with two

independent variables. More precisely, the coefficients 81 and 8. (below)

are chosen in much the same way as ct , a given by Eq. (2.13), where

Yj is calculated from an equation of the form:

Oy Oy

r, - My +—1 a, (x,-u„ )+—1- e (y. ruY )+
j ^J °Xj l j XJ °Y j 2 J"X Yj-1

+Vl-$1P <*, V VlT, tj.^%(2'21)
3j and 8 provide for the preservation of the appropriate correlations,

means and standard deviations.

It can be shown that the two sets of equations, namely Eq.(2.1) and

Eq. (2.20) together, and Eq. (2.21) are both necessary and sufficient in

preserving the appropriate parameters, therefore they must be identical.

(b) Preserving the Coefficient of Skewness

However, the advantage of the above step-wise analysis is that it

is possible to find explicitly the coefficient of skewness of Sj, and

thereby to maintain that of t. and consequently of Yj, under large-sample

generation.

Calculating the coefficient of skewness of a random variable within

the framework of a multiple regression (as given in Eq. (2.21) leads to

difficulties:

By making a substitution in order to standardise the variables, viz.

Xj-yXj Yj-MY
u1 • —n—- and v1 • -^—i

xj Yj

Equation (2.21) becomes:

Vj -BjOj +32VJ_1 +Sj [l-p^Cf Uj)- B2p(V.j V^)]1* (2.22)
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In order to find the coefficient of skewness of Sj and by so doing
maintain that of Vj.both sides of Eq. (2.22) are cubed and expectations

taken:

ECVj3) -3^ EOlj3) +323 ECV.^3) +E(Sj3) [l-B^VjUj) -8^0^ V.^)]**

+38^82 W.^j) +3S^2 ECUjVj^2) (2.23)
The other terms are zero because of the independency of Sj.
Evaluation of the covariance terms can only be done through the

moments of a joint gamma probability distribution. However in the

general case a joint gamma distribution has not been evolved (5), and

so the moments given above can only be found as approximations (6) and,

consequently, the coefficient of skewness of the random variable can

not be expected to be maintained.

By using Eq. (2.20) with Eq. (2.1) it is possible to circumvent

the difficulties arising from the use of Eq. (2.21). Eq. (2.20) can

be rewritten as

a1 o2 u ^

R ~R P<Vl-l»
where a, = . 9 ana a9 " 1 2

1 1_p «jVi> '"p <Vi-i>
with R defined in Eq. (2.8).

Eq. (2.24) is equivalent to:

t, -t-^2- (Y. .- u_ )--~ (X,-uy )+(1 - a, R)*5 S (2.25)
J Yj-i J" J-1 Xj J
Cubing both sides of Eq. (2.25) and taking expectations, results in

Y(tj) -a23 tOf^) -«t3 Y(Xj) +Y(Sj) (1 -otj R)3/2
where y(Zj) is the coefficient of skewness of Zj, given by

E(Zj-Mj)3
Y(Z.)

(V2



- 30 -

The terms E[t.(Y -u )2], E[t 2(Y. -u. ,)]

and E[S2(X.-ux,)] , E[Si(X^-yx.)2]
D D A] J J -j

'v.

vanish, for tj is uncorrelated with Yj as is Sj with Xj, and t., Sj

are standardized gamma random variables.

Therefore,

* Y<fcj) ~ «23 Y<Y1-1> " al3 Y(XJ>Y(Sj) = ^ .
(1 - <»i R)J/Z

Such a value of S. would ensure that the skewness of Y would be

maintained under generation.
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APPENDIX 3

CONVERTING AN ANNUAL STANDARD DEVIATION INTO MONTHLY DEVIATIONS

An artificial rain factor - which is thought to increase the annual

values by factors of 0.1 and 0.2, with estimated annual standard devia

tions - needs to be included in the monthly generation scheme.

a,o, the monthly standard deviations of the increase, are

calculated using the identity below:

12

Var {X(l.l + 0.051 t)} = Var { I X. (1.1 + a t±)}
i=l

(3.1)

Var {X(1.2 + 0.056 t)} = Var { £ X± (1.1 + o,t±)}
i

12

where X = r X., and t,t< are independent normal random
i=l ±

variables on (0.1).

Consider Var {X(a + bt) } = Var {£ X. (a + at±)} (3.2)
i 1

Now, Var {X(a + bt)} - a2 Var (X) + b2 Var (Xt) + 2ab Cov (X.Xt) • (3.3)

This expression can be expanded term by term as follows:

Var (Xt) = E(Xt)2 - E2 (Xt), by definition

= E(X2)E(t2) - [E(X).E(t)] for X and t are independent

- E(X2).1~ 0 - E(X2)

Also, Cov (X.Xt) - E(X.Xt) - E(X).E(Xt)

- E(X2)E(t) - [E(X)]2 E(t) =0

Therefore, it follows from Eq. (3.3) that

Var {X(a + bt)} = a2 Var (X) + b2 E(X2) (3<4)
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The right hand side of Eq. (3.2) can be expressed as follows:

12

Var{ E X.i (a + at.,)} - Var {a E X., + aE X.,t.«}
i-1 j J JJ

- a2 Var (EX.) + a2 Var (E X.t.) + 2 aa Cov (E Xlt E X.t.) (3.5)
i1 j 3 3 i j 3 3

By denoting (A) - Var (E X±)

(B) = Var (E Xjtj)

(C) = Cov (EX., E X.t.)
i 1 j J J

we find that

(A) = Var (X) (3.6)

(B) = E Var (X.t.) + 2 E E Cov (X1t1, X.t.) (3.7)
j Jj i<j J 3

The terms in Eq. (3.7) can be expanded as follows:

E Var (Xjtj) =E{E(Xjtj) -E2 (Xjtj)}

=E{E(Xj2)E(tj2) - [E(Xj)E(tj)]2}

- EE(X,2).l - 0- EE(Xi2)
j 3 j J

Also in Eq. (3.7)

2 E E Cov (Xiti.X-.tj) = 2 E E {E(Xiti.X1t1) - E(X±t1)E(Xjtj)}
i<j J i<j J J

E(Xiti.Xjtj) - E(XiXj).E(titj) -0 for i4j

and E(X±ti) = E(X±) E(ti) = 0

Thus (B) - E E(X 2).
j J
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(C) = EtEXi EX_jt.] - E [EX±] E [EX.t.]
ijJJ i j3

= E[E X.2t. + E E X- X. t.] - E(X) E E(X^t4)
i11^-iDD • JJ

i 3

= 0-0

Therefore using Eq. (3.4) and Eq. (3.5), Eq. (3.2) can be rewritten as

a2 Var (X) + b2 E(X2) = a2 Var (X) + a2E E(X 2) + 0

Therefore a2 = *?* g£&
Z E(Xi2)

Now, Var (X) = E(X2) - [E(X)]2

and Var (Xj) =E(X.2) -E(Xj)

Therefore a2 = b? {Var(X) + 'E'X»'2}
* [Var (Xi) + p.2]
i

where y. = mean of month i

a1 and a can be calculated for the two values of b

For b = 0.051, a, = 0.582

For b - 0.056, o2 - 0.641
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