

UNITED NATIONS

Distr. GENERAL

E/ESCWA/NR/85//9 1 July 1986

Original: ENGLISH

ECONOMIC AND SOCIAL COUNCIL

ECONOMIC AND SOCIAL COMMISSION FOR WESTERN ASIA

NATURAL RESOURCES, SCIENCE AND TECHNOLOGY DIVISION

DEVELOPMENT OF GUIDELINES FOR THE ECONOMIC USE OF WATER IN THE ESCWA REGION

For the preparation of this report, Dr. Bakir Kashif Al-Ghita served as consultant to the United Nations Economic and Social Commission for Western Asia.

86-0767

CONTENTS

			Page
	Abb	reviations	. ix
	Mea	sures of volume and capacity	. x
	Mon	etary data on ECWA member countries	xi
	INT	RODUCTION	1
	A.	General	1
	в.	Objectives of the study	3
	c.	Methodology	4
Chap	ter		
I.	WA	TER REQUIREMENTS AND STANDARDS FOR VARIOUS	
	USI	ES IN THE ECWA REGION	5
	A.	Municipal and domestic uses	5
	в.	Industrial uses	7
10	c.	Agricultural uses	10
II.	ECO	ONOMIC CONCEPTS AND GENERAL ECONOMIC	
	COL	NSIDERATIONS FOR VARIOUS WATER USES	15
	A.	Introduction	15
	в.	Certain useful concepts and economic	
		terminology	16
	c.	Efficiency in the use of water for irrigation and the rate of prices and regulations	18
	D.	Brief review on actual practicies in the RCWA	
		region and India	23
	Ε.	Water and waste charges to households	23
	F.	Water quality management in streams and the	
		role of effluent charges	25

¢

1

I. WATER REQUIREMENTS AND STANDARDS FOR VARIOUS USES IN THE ECWA REGION

The major water uses could be calssifed into three main categories:

- (a) Municipal, and domestic uses in urban and rural areas;
- (b) Industrial requirements;
- (c) Agricultural demands.

A. Municipal and domestic uses

ŧ,

table ce or member nd in

up 3)

and

r the

ing a le to

able

ater

and for

ture

imal

hity

ome

es.

and

mic

mic

ith of

a

.es

of

nđ

st

a Ly Am The development of urabn and rural communities in any country has been closely associated with the provision of adequate water supply and sewage systems. In fact, these systems not only consititute the basis for the promotion of public health and the conservation of manpower, but they also play a significant role in economic development.

The rapid increase in population, the growth of urban areas and the steady rise in living standards have dramatically increased the per capita consumption of water.

Only 77 per cent of the urban population and 22 per cent of the rural population in the developing countries have access to reasonable water supplies. Most of them lack satisfactory sewage disposal facilities $\frac{1}{2}$.

The main issue, from an economic view point is to know the effects of the accessibility, quality and quantity of water on health.

Many human enteric parasites are transmitted though fecal contamination of water2/. This perpetuates many of the problems so prevalent in the developing world. Safe drinking water and safe waste disposal are necessary prerequisites for the eradication of water-borne diseases.

The international WHO standards for drinking water are listed in the following table:

1/ Saunders and Warford: "Village Water Supply: Economics and Policy", 1976.

2/ H. Dietrich and M. Handerson, WHO, Urban Water Supply Conditions and Needs in Seventy-five Developing Countries, 1963.

-5-

Maximum	Mean	Material or Characteristics		
750 mg/1 25 mg/1 - 1 mg/1 0.5 mg/1	250 mg/1 5 mg/1 Tasteless Colourless Less than	Suspended sediment Turbidity Taste Colour Br - Bromium		
1 mg/1 0.5 mg/1 15 mg/1 200 mg/1 200 mg/1 400 mg/1 650 mg/1 Not less than 6.5, not more than 9.2 4 mg/1	0.3 mg/1 0.1 mg/1 1 mg/1 75 mg/1 50 mg/1 200 mg/1 200 mg/1 8.5-7.6 3 mg/1	Fe - Iron Mn - Manganese Cu - Copper Ca - Calcium Mg - Magnesium SO ₄ -Sulphate Cl - Chlorine Ph*-Acidity or alkalinity measure BOD-Biochemical ovygon		
0.05mg/1 0.01mg/1 0.05mg/1 0.10mg/1 0.01mg/1 0.01mg/1	đemand 	As Arsenic Cd - Cadium CN Pb - Lead Hg - Mercury Se		

Table 1: Standards for Drinking Water

Source: World Health Organization (WHO) International Standards for Drinking Water (Geneva, 1963-1971).

* Ph is the logarithm of the reciprocal of the hydrogen ion concentration.

Sedimentation, filtration and chlorination of surface water used for drinking and domestic purposes in the ECWA region are sufficient measures to render it in conformity with the WHO standards while drinkable groundwater needs only to be cholorinated. Periodic analysis of samples of water from water-supply schemes is a recommended routine.

Bicarbonate is common in groundwater. It is likely to contain more iron (Fe) than surface water. Concentrations as low as 0.3 ppm parts per million iron leaves reddish brown stains on porcelain and cloths discounting its value for household use, although it has no ill effect on the human body. Iron is removed by filtering.

Hardness of water is due to the presence of calcium, and magnesium salts in appreciable parts per million (ppm) is another source of complaint for household water consumers. In soft water they are practically absent. The degree of hardness is reported as follows:

Parts per million (ppm)

Classification

0-	-60		
61-	-120		
121-	-180		
more	than	180	

Soft Moderately soft Hard Very hard

Moderately hard water is suitable for all purposes. Hard water may be softened by a lime-soda process and zeolite or cation-exchange. The lime-soda process is employed for public and industrial supplies, while a cation-exchange is utilized for personal or domestic uses. Softening water reduces soap consumption, fuel consumption due to reduced boiler scale and plumbing maintenance expenses.

The average daily world consumption of water per capita is 80 liters according to WHO statistics. This average increases with the rise of living standards and the development of the town. Cities with over (100) thousand population in the U.S.A., for example, are designed on the basis of a daily consumption of (600) liters of water per capita including industrial uses.

B. Industrial uses

Industries consumes huge quantities of water which could be classifed into three interreleted general calsses as follows:

1. Water entering into the formation of the final industrial product forming an important part of it;

2. Water used in industries for cooling, removal of impurities and preparation of solutions;

3. Water used to dilute and remove industrial debris.

Industry consumes most of the water supply in advanced industrialized countries with agriculture a close second. Some wastewater can be treated and reused but with the present rate of growth, reduction in the total water required for industry is not a possibility. Industrialization increases urbanization thus increasing the demand on water supplies for domestic and municipal use.

In group 1 member Countries of the ECWA region, the extensive development of oil fields during the last twenty five years, with the essential urbanization associated with it created a high demand on water for industrialization and urbanization. For this reasons, desalination was resorted to as a valuable supplemental source.

Some industries require more water than others. Table 2 below lists water requirements for a large number of industries.

ing

n.

for

to

ter

rom

on

on

ue

is

ts

or

he

	Inu	dst	ry	Notor Warren in a til	
One	ton	of	Petroleum	water Usage in Cubic Meters	
**	ton	of	Canned vegetable	10	
**	ton	of	Papar	0.04	Chen
**				199.0	ind
			wool textile	600.0	
			Cement	4.50	
		**	Steel	150.0	
	**	**	Nitrogen fertilizers	600.0	
••	**	**	Sulpher mining	800.0	
**	**	**	Artificial rubber	11.0	
One	ton	of	Aluminium	2,100.0	
**	+1	**	Antificial all	200.0	
**		**	Ribber II.	2,660.0	
**			Fibber threads	5,600.0	
	~		Cotton textile	260.0	Y
	1000		Sugar	200-400	

Table 2: Water Requirements for a Large Number of Various Industries

Source: Al-Sahhaf, Mehdi, "Water Resources in Iraq, and Their Protection From Pollution", Baghdad, Ministry of Guidance, 1976, p.156.

Steel production and synthetic rubber use water mainly for cooling. If the purpose is cooling it is relatively easy to retrieve most of the water used for this purpose but not without the expense of investment in cooling tanks, towers and pumping.

Water and waste treatment is freeing increasing amounts of water for use and reuse as more is learned about water quality and how to adjust fresh water of low quality (having a high mineral or organic content) for different uses. New and better treatment methods are evolving every year. Demineralization is likely to carry the burden of water improvement for some time.

Sample standard specifications of water used for different industries are presented in Table 3 below:

Table 3: <u>Sample Standard Specifications for Water</u> for Various Industries

Industry

Textile

Material

Percentage

Fe	
Mn	
Cu	
Dissolved	solids
Suspended	solids
CaCO ₃	
Ph	

Not	more	than	0.3	mg/1
••		**	1.0	mg/1
**	••	**	0.5	mg/l
••	**		150	mg/1
	••	••	1000	mg/1
"	••	••	120	mg/l
Not	less	than	6, no	ot more
			tì	nan 8

Petr

Foo

in

Pa

Table 3: (Cont'd)

ers

Industry Material Percentage Chemical Fe Not more than 5 mg/1industries Mn 2 mg/1... Ca 200 mg/1.. .. Mg .. 100 mg/1HCO3 600 mg/1... SOA 850 mg/1Dissolved solids .. ** .. 2500 mg/1... Chlorides 500 mg/1Suspended sediments ** 10,000 mg/1 CaCO3 1000 mg/1 Alkali 500 mg/1Ph Not less than 5.5, not more than 9 Petrochemical Ca Not more than 220 mg/1 From industries Si03 50 mg/1.. Fe 15 mg/1 Mg 85 mg/1... ** ... K+Na 230 mg/1 If .. ** HCO₃(Bicarbonates) ** 480 mg/1 water .. ** ** SOA 570 mg/1 oling Chlorides 1600 mg/1 NO3 " 8 mg/1 F ... 1.2 mg/1 use. ** ... Deissolved salts .. 3500 mg/1 water Suspended sediments .. ** .. 500 mg/1ises. CaCO3 900 mg/1 n is Ph Not less than 6, not more than 9 Food and canning CaCO3 Not more than 300 mg/1 industries are Ph ** 8.5 .. ** Ca .. 120 mg/1 Chlorides 300 mg/1 SOA ... ** " 250 mg/1 " 0.4 Fe mg/1 ... ** " 0.2 Mg mg/1 " 50 Si04 mg/1... NO3 45 mg/1 Dissolved salts 550 mg/1 ** Suspended sediments 12 mg/1Paper industry Suspended sediments Not more than 500 mg/1 .. " 0.5 Fe .. mg/1 .. Chlorides ... ** 1000 mg/1 Dissolved salte " 1080 mg/1 " 475 CaCO3 mg/1

Ph

- schlar

Between 4.6 - 9.4

Table 3: (Cont'd)

Industry	Material	Percentage	W
Cement industry	CaCO ₃ Hardness Fe Mn Ph Dissolved salts Suspended sediments SO ₄ Chlorides	Not more than 240 mg/1 """500 mg/1 """1.8 mg/1 """5 Not less than 6.9, not more than 8.8 1120 mg/1 200 mg/1 235 mg/1 100 mg/1	n o f w m a c

National Technical Advisory Committee, report on "water quality Source: criteria" submitted to the Secretary of Interior, Washington D.C., 1968.

> See Also: Al-Sahhaf, Mehdi, "Water Resources in Iraq, and Their Protection From Pollution", Baghdad, Ministry of Guidance, 1976, pp. 170-172.

C. Agricultural uses

Water requirements for irrigation and agriculture form the largest portion of water used in arid and semi-arid regions of the ECWA Countries, (Group II and III).

The water requirements for agricultural crops in Iraq, which are about the same all over the two groups of the ECWA regions, are as follows:

Winter crops: One cubic metre per second for every (1,500) hactars all through the winter season.

Summer crops: One cubic metre per second for every (750) hactars all through the summer season.

Gardens: One cubic metre per second for every (1,000) hactars all through the year.

Cotton and Rice: One cubic metre per second for every (500) hacter all through the growing season.

The above-mentioned water requirements represent the average present agricultural water use in Iraq, covering the consumptive use of plants, conveyance losses through irrigation systems, unavoidable field water losses, including deep percolation, (depending on the employed field irrigation method, soil characteristics, depth of water table and climatic conditions), plus the leaching requirements.

qu

W C.

J

In the ECWA member Countries belonging to Group I, the agricultural water needs are about twice as much due to intense heat, low precipitation, higher evaporation rates and unfavourable soil conditions. Expressed in terms of depths of water per unit area, the total water requirement per unit area for winter cultivation in Iraq is considered as 1.2 metre for the entire winter season, while it is estimated to amount from between 2.4 metres to 2.5 metres of water depth per unit area in Kuwait, Qatar, and Saudi Arabia.1/2.

No accurate statistics regarding water consumption by cattle and other animals in the ECWA region is available. Rough estimates of the water consumption by camels, sheep and goats are as follows:

One	sheep	average	daily	consumption	of	water	5	-	6	liters	
One	goat	**	**		**	**	5	-	6	liters	
One	camel	**	**	**	**	**	25		30	liters	

lity

neir

est

but

rs

11

11

11

t

,

n

Table 4 presents some established standards for irrigation water quality.

Water class	Electrical conductivity EC X 10 ⁶	Salt content total ppm	Sodium percentage of total salt	Boron ppm
1	0-1000	0-700	60	0.0-0.5
2	1000-3000	700-2000	60-75	0.5-2.0
3	over 3000	over 2000	75	over 2.0
Source:	Israelson and	Hansen, Irrigati	on Principles and	Practices New Yor

Table 4: Standards for Irrigation Water

John Wiley, 1962. p.226

Class (1): is considered excellent to good, suitable for most plants under most conditions.

Class (2): waters are mentioned as good to injurious for more sensitive plants.

Class (3): considered by the laboratory unsatisfactory for most crops and unsuitable under most conditions.

If the salts present are largely sulphates, the values for salt content in each class can be raised 50 percent.

The following standards are established for fisheries and fish breeding:

<u>1</u>/ Kashif Alghita, Bakir, Ahmad, "Hydrology and its Applictions" Mosul University Publishing House, 1982, pp. 368-372.

Material	Percentago	
PH	Not less than 6.5 and not man it.	agt
Temperature	Does not exceed the water in the hotest summer	
Disolved oxygen	Not more than 6 mg/litre	
Turbidity	Not more than 25 mg/litre	
Petroleum	zero	
Radio activity	zero	

Table 5: Standards of Suitable Waters for Fish Breeding

Source: Al-Sahhaf, Mehdi, Pollution Control and Water Resources in Iraq, Al-Hurriyah Printing House, Baghdad, 1976, p. 168.

The FAO standards for waters suitable for agriculture which seems to be very strict and waters suitable for domestic animals are presented in Tables 6

Table 6: Water Standards for Agriculture (FAO)

Matter or characteristic	Percentage
Color	Colorless
Taste and Oder	Tasteless and Odorless
PH	Not less than 6 or more than 8.5
Total soluble inorganic matter	500 mg per litre
Total organic soluble matter (1 mg/1 (17 mg/1 (17 mg/1 (42 mg/1	Andrine Eldrine Di-eldrine DDT
Turbidity	Free
Toxic Matter As Br Pb Ag Fe Zn	Not more than 0.05 mg/l Not more than 1.0 mg/l Not more than 0.05 mg/l Not more than 0.05 mg/l Not more than 0.30 mg/l Not more than 5.00 mg/l

Al-Sahhaf, Mehdi, Pollution Control and Water Resources in Iraq, Al-Hurriyah Printing House, Baghdad, 1976, p. 169.

gr ag

1. 12 2 . 100

1.181

2.

th hi Table 7 shows somewhat detailed standards for surface waters suitable for agriculture.

	Class	Total soluble salts (mg/l)	Electrical conductivity EC in Micromhos/cm	Agriculture use	
1.	Suitalbe fo all crops under all soil condi- tions	or 0-500	0.75	All crops(Beans, radish, peas, apples, oranges, etc.)	-
2.	Crops rela- tively tole to salinity good drains	- 500-1000 erable y with age	0.75-1.5	(Wheat, barley, rice, maize, tomato, vegetable, Olive, Cabbage, etc.)	
3.	Crops toler ble to sal with adequa drainage an soil care	ra- 1000-2000 inity ate nd	1.5-3	(Cotton, Palm trees, Beet, etc.)	
4.	Some crops with adequa soil draina	2000-5000 ate age	3-7.5	(Palm trees, alfalfa, salt grasses, etc.)	
5.	Not suitabl for any cro	le Over 5000 op	Over 7.		
	Ph	5.5-8.5	temperature 12.8° 29.3°		

 Table 7:
 Classes of Surface Water According to Their

 Suitability to Agriculture

Iraq,

to be les 6

aq,

<u>Source</u>: National Technical Advisory Committee, <u>Report on Water Quality</u> <u>Criteria</u> submitted to the Secretary of Interior. Washington D.C., 1968. p. 170.

See also: Al-Sahhaf, Mehdi, Pollution control and Water Resources in Iraq, Baghdad, Al-Hurriyah Printing House, 1976, p. 173.

Almost all surface water in rivers and streams and most of the mined groundwater and springwater throughout the ESCWA region are suitable for agriculture and up to standard.

Re-use of agricultural drainage water and groundwater containing more than 3000 ppm soluble salts is feasible after mixing it with fresh water of higher quality.

-13-

Disposal of wastewater due to the previously discussed water uses-urban, industrial and agricultural necessitates the construction of adequate sewage disposal systems, terminated with sewage treatment plants. The treatment and removal of industrial debris; and the construction of appropriate drainage systems and outfalls in agricultural areas, when necessary, are essential.

Negligence of adopting such proper measures would lead to serious health hazards, pollution and quality degradation of water sources and the ruin of cultivable areas due to waterlogging and salt accumulation problems.

The wastewater disposal and treatment projects are extremely costly. A substantial portion of the capital investment and operation and maintenance costs could be recovered, however, through a carefully planned pricing and tarrif policy, the resale of treated sewage waste sludge as fertilizers and the re-use of drainage water after mixing it with appropriate amounts of fresh water.

It may be concluded that the growing population and steady development of the ESCWA region place higher demands on suitable water supplies year after year.

Desalination and domestic and/or public effluents re-use projects have to carry the burden, for many years to come, in Group 1 and 2 member Countries, the Sinai Peninsula and Matruh and Red-Sea Provinces in Egypt.

Engineering and agronomic measures in Group 3 ESCWA member Countries, can meet the required water demands through careful planning.

Α.

socio conce regul treat

water munic dispo

effic combi and inves

to tinduc

conse

was appro demai

redi

with way

conc

oft

port

10

agri and bala