

Introduction

Funds for the project on evaluation of hops were provided by the 1937 Legislature. The first work attempted was on the 1937 crop. Work on these samples was extended into 1938 and completed at that time.

The evaluation studies on hops were divided into physical analyses and chemical analyses. The suope of the work and the results accomplished are included in a progress report made to the Director's Office in the fall of 1938. This report is included herein, following immediately after Table 2.

Source of Material

Samples for the hop evaluation project were obtained from two hop firms in Salem, the T. A. Livesley Company and the Pacific Hop Growers, Inc. The farms from which these samples came, together with a brief description of them, are given in Tables 1 and 2.

No. of Samples	Sample Number	Bales	Name of Grower	Description
5	1	55	Thomas Rabie (Yaki	imas) Good, medium greenish
1	2	74	E. C. Davidson	Good, medium, greenish, yellow
1	3	75	Geo. Rosich	Choice, yellow
1	4	58	Homer Marquam	Medium, greenish
1	5	72	Mrs. Etta Kehoe	Medium, greenish
1	6	55	Rude Berning	Good, medium, greenish
1	7	25	Ed Wanner	Good, medium, greenish, yellow
1	8	72	Gossler & Oberson (fugg	(les) Good_medium.greenish.yellow
8	9	33	Bert Ebner	Poor, greenish, yellow
3	10	65	Mrs. Lena Fessler	Good, medium, greenish, dirty picked
3	11	31	C. E. Geelan	Good, medium, greenish, seedless type mottled
1	12	37	Roy Michaels	Poor, greenish, yellow
2	13	62	Martin Schneider	Good, medium, yellow, dirty picked
1	14	45	Butte Creek Orchards	Re-dried
1	15	56	Ray Martin	Good, medium, greenish
1	16	14	Sam Fawver (fuggles)	Poor, greenish
2	17	78	Robin Day (fuggles)	Good, medium, greenish, yellow
2	18	60	Albert Mikkelson	Good, medium, greenish, dirty picked
1	19	132	Wm. Middleton	Choice, yellow
1	20	74	W. L. Murray & Son	Choice, greenish, yellow
2	21	165	Carl Goshie	Good, medium, greenish
1	22	31	Keber & Mortensen	Good, medium, greenish
1	23	5 5	Alvin Thompson	Poor, greenish
1	24	53	J. N. Gooding	Medium, greenish, yellow
1	25	43	Anderson Bros.	Good, medium, greenish
1	26	17	Harold Satern	Good, medium, greenish, yellow
1	27	62	Henry Annen	Poor, greenish, semi-seedless, dirty picked
2	28	67	Harold Satern	Poor, greenish, yellow, dirty picked
3	29	78	C. Christe	Good, medium, greenish
2	30	36	A. C. Locke	Medium, greenish, dirty picked
3	31	124	Arthur Goffin	Medium, greenish, yellow, dirty picked
2	32	51	Leo Buyserie	Good, medium, yellow
2	33	25	Glen Hastings	Medium, greenish, dirty picked
1	34	83	C. H. Lorenze	Good, medium, greenish
1	35	19	Rohwein Bros. (fuggles)) Poor, medium, greenish, dull, dirty picked
4	36	516	Ben Hilton (DL1,DL2)	Medium, good, dull, mottled
4	37	328	Ben Hilton (HE1,HE2)	Poor, yellow
2	38	60	W. A. Turnidge	Good, medium, yellow
1	39	460	Fook Chung	Poor, greenish
1	40	249	Hartley & Hadley	Poor, greenish
1	41	84	Albert Egan	Medium, greenish, yellow
2	42	150	Willamette Hop Co.	Poor, yellow
2	43	30	M. Smith	Poor, medium, red, dirty picked
2	44	124	Jerman & Chittenden	Good, medium, greenish

Hop Samples Furnished by T. A. Livesley Co., Salem, 1937

Table 1

Table	1	(Con.)
-------	---	--------

.

No. of Samples	Sample Number	Bales	Name of Grower	Description
2	45	101	R. H. Corbett & Jones	Medium, greenish, yellow, dirty picked
1	48	88	Bert Jerman	Good, medium, greenish
1	47	112	V. O. Kelley	Good, medium, greenish, yellow
1	48	35	Ed Loose	Good, medium, yellow, red tint
2	49	57	Martin Westendorf	Medium, good, dirty picked
1	50	94	Hobart Mitchel	Good, medium, greenish, yellow
2	51	58	Lelek & Co.	Medium, greenish, yellow, dirty picked
1	5 2	20	John Stenger	Poor, medium, greenish, yellow, dirty picked, red tint
1	53	51	M. Smith	Medium, greenish, yellow, red tint, dirty picked
1	54	209	D. C. Minto	Good, Medium, greenish
2	55	99	Collins & Collins	Poor, greenish, yellow
ĩ	56	270	Dave Titus (fuggles)	Good, medium, greenish, yellow
ĩ	57	91	Collins & Collins (fuge	(les) Poor, greenish
2	58	129	Collins & Collins	No. 1 sample is poor, greenish
				No. 2 sample is good, medium, greenish, yellow
2	59	265	Collins & Collins	Good, medium, greenish
2	60	272	D. P. McCarthy	Medium, greenish
1	61	66	S. A. Varble	Medium, greenish
2	62	128	Robin Day	Medium, greenish, yellow
2	63	108	Fred Viesko	Good, medium, greenish
2	64	179	Fred Viesko	Good, medium, greenish
2	65	141	Bert Jones	Medium, greenish
2	66	39 4	Ross Wood and Hugh Nels	son Sample No. 1 good, medium, greenish
				Sample No. 2 medium, greenish, yellow
1	67	21	R. Newenschwander	Medium, yellow, red tint
ī	68	15	W. Newenschwander	Medium, greenish, dirty picked
2	69	62	Frank Buckley	Good, medium, greenish
ī	70	30	0. Smith	Good, medium, yellow
2	71	62	Bill Annen	Poor, medium, dull, greenish, dirty picked
1	72	27	Guy Chapman	Medium, greenish, yellow
2	735 27 - 10 27 - 10 27 - 10	36	Otto Lucht	Medium, greenish, yellow, dirty picked
1	74	39	Roth & Roth	Good, medium, greenish, yellow

4

Hop Samples Obtained from Pacific Hop Grower, Inc., 1937 Crop

Samle			
Number	Bales	Name of Grower	Description - variety
1	1000	C. L. Ross	Sacramentos
2	25	Albert Sather	Fuggles
5	151	Ben Eppers	Fuggles
8	26	Oscar Satern	
ġ	44	John Gafte	
12	15	Oswald Johnson	
14	x20	John Jacobs	Fuggles
15	10	Henry Humpert	Fuggles
16	x 50	Ray Morley	Fuggles
20	39	P. C. Magness	
25	16	Chas. Swartout	
26	71	Kon Williams	Fuggles
27	65	C. Messenger	Fuggles
50	72	Etta Kehoe	Early Clusters
51	32	Willemotte Hop Co.	Early Clusters
32	x250	Linn & Linn	
55	250	Mission Bottom Hop Co.	<i>,</i>
34	68	V. O. Kelley	
36	300	John Morley	
37	x100	Geo. Elton	
38	x20	Joe Zies	
40	35	Frank Poepping	
42	54	John Morley	Fuggles
43	17	Harold Satern	
44	12	John Moe	
45	x100	Oscar Overland	
47	14	Paul Dettwyler	
48	13	Gil Bentson	Fuggles
49	35	Mike Zies	
50	27	Otto Dahl	
51	22	Adolph Hari	Fuggles
52	x300	C. G. Hiltibrand	
53	116	Downing & Stutesman	
54	116	Fook Chung Co.	
58	42	Ed Harnsberger	
62	79	Robin D. Day	Early Clusters
63	336	F. E. Needham	Fuggles
64	45	Wm. Geiger	
65	43	Henry Johnson	Late Clusters
86	65	Morley & DeLang	Early Clusters
68	x60	Emil Loe	Late Clusters
73	28	Herold McKay	

Table 2 (Con.)

Į.

Sample	n. •	Same of Cumpus	Description - variety
Number	19162	ANNO OI UTONGI	
75	19	Harold McKay	· ·
79	38	P. C. Magness	
80	x175	Vinton & Loop	
81	15	T. W. Beamish	
82	49	Lena Kuenzi	
83	x30	Holman Bros.	
84	27	Joe Zies	
87	72	Gosler & Oberson	Fuggles
88	358	Virgil De Coster	Fuggles
89	44	Sloper Bros.	
97	x500	F. E. Needham	
98	9	Nick Krebs	
148	40	J. D. Lofgren	
156	345	A. M. Jerman	
157	388	Sloper Bros.	
158	225	Sloper & Son	
159	125	Greer & Reese	Sacramentos
160	218	Aman & Harbison	
162	125	Oscar Satern	
163	43	Geo. Wood	
166	51	Wenger Bros.	
167	32	John Overland	
168	40	Turner & Vaughn	
169	68	Gaffke	
170	20	R. Davidson	
171	9	Albert Sather	
172	150	Lee Quan	
174	134	Downing & Stutesman	
175	156	Hedges Estate	
176	80	W. Porterfield	
185	68	A. Schar	
187	81	Oscar Smith	
188	53	J. N. Gooding	
189	5	Tegland	
190	37	Eric Larson	·
191	18	Ben Funrue	
192	2 2	Art Brenden	
193	13	Otto Anderson	
194	47	Lovelin	
195	136	Ches. Walker	
196	60	A. E. Jergeson	
197	70	Gaffke	
198	270	Dave Titus	
199	x150	Hugh Smith	10 1
200	125	Homer Gouley	Early Ulusters

Table 2 (Con.)

Sample			
Number	Bales	Name of Grower	Description - variety
			Tata (instance
201		Homer Gouley	THE CIRCOLS
202	x180	E. A. Miller	
203	288	L. Lachmund	Taka Clustone
207	128	Robin Day	Late Clusters
208	150	Wm. Nicholson	Tata (Sucham
209	38	P. C. Magmus	Late Clusters
214	18	Fred Viesko	A
215	27	L. S. Christofferson	ruggles
216	222	L. S. Christofferson	
217	50	Christofferson & Sandgathe	
218	231	Frank Needham	
219	17	Frank Needham	
220	104	Brown Island	
221	32	Brown Island	· · · · · ·
228	44	J. S. Gilkey	
232	45	Iran Branton	
233	35	Brnest Schneider	
235 Id	aho	Roger Batt	Early Clusters
241	53	Chas. Feller	
242	48	Chas. Feller	Early Clusters
243	98	Chas. Feller	
247	72	A. Nusom	
249	58	Glenn Hiltibrand	
550 A	199	Mrs. Weston	
550 Be		**	
251	66	S. A. Varble	
252	140	E. A. Miller	
253	43	L. E. Stafford	
265	68	Allen Drescher	
266	81	John Brunner	
281	90	Ben Shepard	
284	48	H. G. Lucht	
292	99	James Feller	1
501	310	V. O. Kelley	
317	56	Ray Martin	
319	109	A. E. Feller	
320	91	A. E. Feller	
529	180	Cooper & Fawver	Fuggles
220	54	Carl Kirk	
358	56	Hattie Hovenden	
000 880	9K	D. G. Robertson	
200 27A	395	Lee Hing	
0/% 204	70	Jake Wanner	Seedless
1040 1040	70	Hattie Hovenden	
400 400	70 QK	F. E. Maxfield	
410	EE .	Chas. Chikuo	
410	10	R. Stadali	
405	TO		

Table 2 (Con.)

Sample Number	Bales	Name of Grower	Description - variety
455	11	R. Stadeli	
459	181	Helmer Jacobson	
468	105	B. Belair	Yakimas
485	46	Frank Hein	
495	34	Joe Jacobs	
502	150	Willamette Hop Co.	
503	86	Otto Lucht	
506	91	Fred Kaser	
507	86	Fred Kaser	
510	28	Fred Kaser	
512	55	Ralph DeSart	
513	52	Ralph DeSart	
616	50	Schutz Bros.	· · · · · · · · · · · · · · · · · · ·
519	94	Collins & Collins	Fuggles
521	60	John Beck	
546	29	John Wolf	
547	77	Wm. Nicholson	
552	59	Ross Wood	1935 Fuggles
566	14	Oral Egan	
587	94	Fred Stadel1	
609	119	Eric Larson	
810	118	0. J. Schlottman	
611	66	0. J. Schlottman	
619	53	Joe Faulhaber	

A PROGRESS REPORT OF THE STATE PROJECT

8

"THE EVALUATION OF HOPS"

by

D. D. Hill & D. E. Bullis

Introduction

At the 1937 session of the State Legislature, an appropriation was approved for the study of problems of particular interest to the hop industry. One such problem is the determination of hop quality. It was thought that information would prove to be valuable not only to the research program but also to those engaged in production and marketing of hops.

Under this project, an attempt has been undertaken to determine what factors, physical and chemical, enter into the estimation of hop quality, which at present is determined solely by casual inspection of certain physical characteristics.

The project has been divided into three portions, the first of which deals with a study of the physical factors relating to hop quality; the second deals with a study of the chemical factors which may have a bearing on hop quality; and the third deals with the relationship between the first two. The study of physical factors was conducted by D. D. Hill of the Farm Crops Department, and the chemical studies were made by D. E. Bullis of the Department of Agricultural Chemistry.

A STUDY OF PHYSICAL FACTORS RELATING TO HOP QUALITY

As a starting point in the study of physical factors relating to hop quality, it was necessary to ascertain what the factors were that should be studied. This was done by contacting hop growers, dealers, brewers, and others interested in the production, marketing and consumption of the crop. The factors gathered in this way represented a wide range if ideas which often were not in very close agreement. It was apparent that such factors as were being used to evaluate hop quality represented opinions only of those interested in the buying or selling of hops. Many of the factors used were not susceptible of accurate measurement, or, if they were susceptible of measurement, were not being measured accurately. Furthermore, there appeared to be wide variations in opinion as to the exact relationship of many of the physical factors to the intrinsic value of the hop in commercial uses.

The factors which appeared to be of interest to those engaged in marketing and which at the same time appeared to be susceptible of measurement were: (1) percentage of seed, (2) color, (3) percentage of foreign material, (4) maturity, (5) condition of the hops. It was recognized in the beginning that these factors did not include all the possible ones and that they probably included some which had little or no value.

The second problem in this connection was in the development of technique necessary to measure the physical qualities accurately. For the most part, little or no information was available to serve as a guide. Therefore, it was necessary to make many determinations which were purely experimental in nature and which had to be repeated many times in order to test the accuracy of the method. Samples for these studies were collected through the cooperation of the Pacific Hop Growers, Incorporated, and the T. A. Livesley Company, both of Salem, Oregon. Both of these firms supplied the investigators with adequate samples from their stock of samples. In addition they furnished the name of the grower, the description of the variety in certain cases, as well as the total amount of the erop. Altogether some 500 samples of hops from the 1937 crop were gathered for physical analysis. These samples were kept in air tight cans, stored in the cold room at the Poultry Building, at a temperature of from 54° to 36° F.

Certain difficulties were encountered in handling, storing and working on such a large number of samples. Adequate research laboratories for this purpose are not available, hence it became necessary to move material from the storage area to an instructional laboratory for actual analysis. Furthermore, it was necessary to carry on the analytical work at a time when laboratory instruction was not being given. Future work could be facilitated by more adequate research laboratory space.

Results.

1. Seed weight. The percentage by weight of seed is recognized generally as important in evaluating hops. The low seed content of many foreign hops is usually pointed out as one of the reasons why this class of material brings a better price on the market. In order to determine seed percentage without an exorbitant cost, it was necessary to develop a new method. The only prescribed method is that of the U. S. Department of Agriculture, which requires heating at a given temperature for six hours and followed by the actual separation of the seed from the hop cones.

By washing the sample in methyl skehol and drying in an oven the time required in preparing the sample for analysis was reduced from six hours to ten minutes. Repeated comparisons of the two methods indicate only a slightly lower accuracy by the alcohol method.

The percentage of seed was found to vary widely. Samples with as low as one per cent of seed were found, as well as samples with as high as 25 per cent. The average seed content ranged from 6 to 12 per cent.

Determination of seed weight by counting a given area. An attempt was made to determine the seed weight by counting the number of seeds in a given area on the cut surface of a sample. The area used was 2.25 square inches and an average of five counts was made on each sample. When the counts were converted to seed weight by the use of an appropriate factor, certain wide variations were found. It was then discovered that the seed weights varied with the maturity, and that maturity could be ascertained by the amount of dark seeds. The samples were classified into three groups according to the percentage of dark seeds. An attempt was then made to classify the samples according to the maturity of the seeds and to use three different factors based on maturity. It was found that while the average seed weight of a number of samples determined by count agreed closely with the average obtained by the alcohol extraction method, the individual variations were great enough to prevent the use of this method on individual samples. It would appear that if seed weight is to be determined, the most practical method is to use the alcohol extraction method.

2. Foreign Material. Foreign material was determined by analysis of a given weight of sample. The percentage by weight of foreign material varied from less than one per cent to more than 15%. This foreign material

is mostly leaves and stems, resulting from poor picking. As the leaves and stems have no value in the brewing process, the presence of such material definitely lowers the hop quality. Foreign material can be determined easily--include in stands general appearance--sales.

5. <u>Color</u>. The color of these 300 samples was determined on the Munsell color machine, which has been developed to determine color in a wide variety of agricultural products. The color machine has been developed to measure color in three different ways; hue, value and chrome. Hue is the quality by which one color is distinguished from another. Value is the quality by which a light color is distinguished from a dark one, and chrome is the quality by which a strong color is distinguished from a weak one. The color tests show rather wide ranges in hue and chrome but relatively small ranges in value. By the use of this apparatus it is possible to determine color value quickly and accurately.

It is difficult, however, to the color values to any intrinsic value in the hop itself. The hop trade appears to have widely varying ideas about the importance of color, as well as the actual color of the best quality hops. As color values are affected by the practice of using sulfur in curing, it becomes more and more difficult to indicate that a definite color value represents a given quality. The tentative conclusion is reached that color values are more apparent than real. Undoubtedly color will affect the market value of hops in so far as a buyer has a preference for a certain color. It is difficult to establish that color is related to quality except when the color values are destroyed due to disease, insect damage, or over-ripeness and immaturity. It should be possible to work out definite color values to associate with these factors. Generally hops with a high

hue value tend to be immature, while those with a low chroma value tend to be hops which are over-rips and affected by disease or insect pests.

4. <u>Condition</u>. The condition of the hop cone was found to vary within wide limits. In every sample determinations were made of the percentage of broken cones in the sample. The analyses show very few samples in which the percentage of whole cones exceed 50 per cent. Approximately one-half of the samples will show 25 per cent whole cones or less and many of them will have as little as 10 per cent. As the broken cones may often be inferior to whole cones, due to over-drying, loss of lupulin, etc., there appears to be ample opportunity to improve quality by improvement in drying and handling methods.

An attempt was made to evaluate the condition and amount of lupulin. It was difficult to evaluate these differences accurately by physical examination. Possibly this was due to the fact that the test was not made until the hops had been in storage for a considerable period. It is believed that further attempts should be made along this line but that these should be done while the hops are still fresh and before the character of the lupulin has changed.

An attempt was made to obtain attachments to the Heppenstall moisture meter in order to determine moisture content of the dried hops. Sometime previously the Tagliabue Company had developed an attachment for this purpose. Upon contacting this company it was found that such attachments were not now available, nor were they contemplating the manufacture of any such unit at this time. Because of the difficulty of storing hops and in obtaining the air-tight containers in which to store them at the beginning of these studies no attempts were made at moisture determinations on the 1937 crop.

CHEMICAL FACTORS CONCERNED WITH QUALITY IN HOPS

In order better to understand the functions of chemistry in the determination of hop quality, it is desirable to review briefly the purposes of hops in brewing and to discuss the constituents of hops which are important in the brewing process and some of the chemical reactions to which they are subject.

The functions of hops in brewing are at least three-fold. The essential oils present in hops provide the aromatic flavor, the soft resins provide the mild bitterness characteristic of beer, and they also exert an antiseptic action against certain bacteria which are responsible for undesirable lactic types of fermentation and "off flavors." Hop tannins also aid in the coagulation of certain protein-like substances, which if not removed cause cloudiness in the finished beer.

Of these constituents, the resins are probably the most important and at the same time, the most susceptible to injury and deterioration through improper methods of drying and storage.

Hop resins comprise three different groups of closely related compounds. Two of them are termed soft resins and are named "alpha" and "beta" resins, and are of especial interest to the brewer. The third is a hard resin called "gamma resin," which is useless in brewing, but which is, nevertheless, important to the brewer in that it is formed at the expense of the valuable soft resins through processes of oxidation.

Of the two soft resins, the "alpha" resin is the more important since it is considered to be three times as potent antiseptically and about four times as high in its brewing value as an equivalent amount of the "beta" resin.

The term "preservative value" is frequently used to express the value of the combined soft resins in a hop sample. In the value so computed the "beta" resin is given one third the value of a corresponding amount of "alpha" resin. The expression used for calculating the preservative value is commonly written as $10(A + \frac{B}{\pi})$.

Through natural oxidation and aging, the "alpha" resin is converted to less valuable "beta" resin, and the "beta" resin in turn to the "gamma" or hard resin. The content of soft resins and the rapidity of these changes depends in great measure on the manner in which the crop is harvested, dried and stored.

For maximum soft resin content, the crop should be allowed to mature fully before harvest as the resins increase most rapidly in the late stages of cone development.

Drying should be carefully controlled because high temperatures induce rapid oxidation of the soft resins to hard resins. Degree of dryness is also significant because if overdried the cones are easily broken and the resin-bearing lupulin lost in handling. If under-dried, heating and bacterial deterioration take place after baling.

Storage is a factor in quality that is too often neglected. It has been shown beyond doubt that the natural oxidation changes of the soft resins may be slowed down by storage of hops at low temperatures, and most breweries maintain temperatures near 32°F. for hop storage. On the other hand, high temperatures accelerate the deterioration and hops so stored in hot warehouses may depreciate rapidly in brewing value.

With this brief explanation of the purpose of hops in brewing, of the chemical changes to which the constituents of hops are susceptible and

of the conditions which influence these changes, the function of chemical analysis in setting up standards of quality may better be understood.

Only by chemical analysis can the resin content be accurately determined, and thus one of the most important factors in the evaluation of hops ascertained. Several chemical methods have been devised for the resins determination. Probably the most accurate of these are the methods that have been worked out by English chemists, who for many years have been carrying on hop investigations financed by grants from the Institute of Brewing. Although time-consuming in operation, these methods of analysis were selected as best suited for the chemical phases of the hop evaluation project, but for routine work such as might be involved in hop grading, a much simpler and more rapid approximate method of resin estimation must be devised. By the above mentioned method, about two samples per day can be analyzed, which is far too slow a procedure for adoption in a grading system.

Of the approximate three hundred crop samples collected for the first year's work on this project, time allotted to the chemical phase of the work permitted the analysis of 103 samples for "alpha," "beta" and "gamma" resins and moisture content. The data from these analyses serve two purposes; first, as a means of studying the variation or range in resin values that may normally be expected in samples of one variety or between varieties, and second, for use in determining what correlation, if any, exists between chemical analysis and the various physical factors which are now commonly used in grading hops.

The correlation of physical and chemical data will be discussed later in this report. A short discussion of the variation in resin content and preservative value noted in the samples analyzed follows:

Fourteen samples of Fuggles hops were tested, and the range for moisture, resin, and preservative values were as follows: Moisture, 5.36% to 7.48%; alpha resin, 4.48% to 6.36%; beta resin, 8.74% to 11.94%; hard resin, 1.08% to 1.49%; preservative value, 79.6 to 98.9.

Eighty-two samples of Late Clusters hops showed a range for moisture of 4.56% to 8.08%; alpha resin, 4.52% to 8.50%; beta resin, from 6.84% to 15.47%; hard resin, from .83% to 1.88%; and preservative value, 80.9 to 117.4.

Four Early Clusters hop samples gave moisture 6.12% to 7.56%; alpha resin, 5.74% to 6.73%; beta resin, 10.21% to 10.82%; hard resin, 1.34% to 1.51%; and preservative value, 91.9 to 102.7.

The distribution of the above samples within the range indicated for the various resin contents is shown in the following tables:

Fuggles (14 samples)										
A Resin Content	4.(4.)	00- 50%	4.51- 5.00%	5.01- 5.50% 5		5.51- 6.00%	6.01- 6.50%			
No. Samples]	1	2			5	. 1			
B Resin Content	8 • 50- 9 • 00%	9.01- 9.50%	9 .51- 10 .00 %	10.01- 10.50%	10.51- 11.00%	11.01- 11.50%	11.51- 12.00%			
No. Samples	2	3	0	4	2	2	1			
Hard Resin 1.00- Content 1.10%		1.11-	1.21- 1.30%		1.31- 1.40%	1 .41- 1.50%				
Nc. Samples	:	2	5	3		2	2			

Preservative Value	75-80	81-85	86-90	91-95	96100
No. Samples	2	8	5	8	1

For the Late Cluster Lots the distribution is indicated below:

Late Clusters (82 samples)										
A Resin Content	4.50- 5.00%	5.01- 5.50%	5.51 6.00%	- 6.0 6.5	1- 6 0% 7	.51- .00%	7.01- 7.50%	7.51- 8.00%	8.01- 8.50%	
No. Samples	4	6	16	21		22	7	5	1	
B Resin Content	6.00 7.00%	7.01- 8.00%	8.01 9.009	- 9.0) \$ 10.0	1- 10 0% 1	0.01-	11.01- 12.00%	12.01- 13.00%	13.01- 14.00%	
No. Samples	1	1	1	11	1	30	28	9	1	
Hard Resin Content	.80= 1.00%	1.01- 1.10%	1.11- 1.20%	1.21- 1.30%	1.31- 1.40%	1.41 1.50	- 1.51- % 1.60%	1.61-	1.71-	
Nc. Samples	4	12	25	18	15	2	2	3	3	
Preservativ Value	ve 80 85	8 6- 90	91- 95	9 6- 100	1(0 1- 05	10 6- 110	111- 115	116- 120	
No. Samples	2	8	15	16	21	D	15	5	1	

Because of the very few samples of the Early Clusters hops examined, there are no distribution tables included.

From the tables for Fuggles, it may be seen that an average sample of the 1937 crop tested about 5.50% alpha resin, 10.00% beta resin, 1.20% hard resin and had a preservative value of approximately 85 to 90.

For Late Cluster hops, the approximate average values are: alpha resin, 6.50%; beta resin, 11.50%; hard resin, 1.20%; and preservative value about 100.

These average values compare very favorably with those available for crops previous to 1937. This fact is all the more striking when it is remembered that when judged by the commonly employed physical standards the 1937 crops was considered to be of very inferior quality due to downy mildew, mold and insect injuries. Chemical analyses, however, appear to show that such injuries to the physical appearance of the grop have in no way affected the resins content and such the brewing value of such hops.

RELATION OF PHYSICAL TO CHEMICAL FACTORS

The variation in the prices paid in a given year is usually a reflection of the variations in physical characteristics. The intrinsic value of hops appears to be related largely to the chemical constituents. Therefore, when hops are purchased on the basis of physical characteristics, and if the price paid reflects the actual value of the hops, there should be a reasonably close correlation between the physical and chemical characteristics. In order to determine the extent of such relationships, correlation studies of the physical and chemical factors were undertaken. In all cases, the percentage of soft resins was taken as the chemical character of most importance.

Correlation coefficients were computed to show the relationship between the amount of soft resins and the following physical characters: percentage of seeds, maturity of seed, foreign material, color (both hue and chroma values). These correlation studies failed to show a single correlation coefficient of any statistical significance. This naturally raised the question as to (1) whether hops are bought under a false set of values, (2) whether the physical characters were measured accurately, or (5) whether the proper physical characters were studied. It is entirely likely that the answer may be found in all three possibilities. In this connection, it should be pointed out that the hops studied in these investigations were produced in an abnormal season. There was a considerable mildew infection throughout the season, and this was followed by heavy damage from red spider, aphids, and consequent mold during the harvest period. In the opinion of most producers and dealers contacted, the quality of the 1937 erop was much below average. Possibly these abnormal conditions have upset the relationships which may normally exist between the physical characters and the chemical constituents. In order for any definite conclusions to be drawn, the studies should be continued on the 1938 erop which appears to be above average in quality.

CONCLUSIONS

While it is premature to consider the development of grades and standards on the basis of one year's investigations of an abnormal crep, certain conclusions may be drawn at this time:

(1) Certain physical characters are used so generally under present marketing conditions that they must be included under any set of standards which may eventually be developed. Many of these such as color, percentage seeds and foreign material are susceptible of measurement in a manner which would be entirely practical from an inspection standpoint.

(2) The apparent lack of relationship between physical and chemical characters emphasizes the necessity for the development of a simple, rapid, and reasonably accurate method of determining the amount of soft resins, if this important indication of quality is to be used in grading or in influencing price.

ABSTRACT

The project on "Evaluation of hop quality" was divided into two parts. One part dealt with the physical factors, the other with chemical determinations.

Physical examination was made of approximately 300 samples from the 1937 crop. Determination of seed weight, seed maturity, color, foreign material, and condition of cones was included. A new method of determining seed weight was developed which reduced the time of preparing the sample from six hours to a few minutes. The physical condition of the 1937 crop was considerably below normal, due to mildew, insect, and mold damage.

Chemical determinations were made on 103 samples to ascertain the percentage of both soft and hard resins. The results show the resin content to compare favorably with that obtained in other seasons, even though the physical condition was considered below normal.

A study of the relation of physical and chemical factors failed to show any significant correlation. The tentative conclusion is reached that, despite the lack of correlation, the use of physical factors by the trade necessitates further study and measurement of them. The further conclusion is reached that some rapid and accurate method for the determination of resins is necessary if adequate grade standards for hops are to be formed.

Physical Analyses of Hops

In attempting studies on physical condition of hops, it was necessary to develop methods and technique. Hop growers and dealers emphasize certain points in connection with hop quality, but without exception these points are a matter of estimation rather than of measurement. After studying this matter for some time it was decided to concentrate physical studies on the following points: percentage of seed, percentage of leaves and stems, percentage of strigs (the central axis of the hop come), color and general condition. The development of methods for determination of seeds presented the most difficult problem. The problem and the development of methods of seed analysis are given in the following article which was prepared by C. G. Monroe and D. D. Hill for publication in the Journal of the American Society of Agronomy;

METHODS FOR DETERMINING THE PERCENTAGE

OF SEEDS, STRIGS, STEMS, AND LEAVES IN COMMERCIAL HOPS

*C. G. Monree and D. D. Hill

The seeds, strigs, stems, and leaves in commercial hops add little to the brewing value. Brewers generally consider seedless hops to be superior to seeded hops as the seeds are believed to impart undesirable flavors and odors to the brewed beverages. All of these materials add useless weight to the hops.

Brewmasters and hop dealers have made it a practice to estimate roughly the amount of impurities in a given sample. If analyses are necessary, the stems and leaves can be picked from the sample and the percentage determined accurately. The stickiness of the lupulin which covers the base of the bracts of the hop come and the enclosed seed makes accurate physical analysis of this factor difficult. Lupulin also interferes with accurate determination of strigs.

*Graduate Assistant and Associate Agronomist, Farm Crops Department, Oregon State College, respectively.

Published as Technical Paper No. 312 with the approval of the Director of the Oregon Experiment Station. Contribution of the Department of Farm Crops.

At the request of the Oregon hop industry, experiments were initiated by the Oregon Experiment Station to study the physical and chemical properties of commercial hops. In this study it was necessary to determine accurately the percentage of seeds in a given sample. A comprehensive review of the literature on the subject revealed only two methods that had been used to accomplish this objective. Epstein and Hubbard(1) suggested a method in which the seeds were plucked from the cones by hand and the lupulin removed from the seeds by rubbing between the thumb and index finger. When the fingers became oily they were dipped in 50 per cent alcohol and wiped clean. About two hours were required to determine the seed content of a 10-gram sample, which according to Epstein and Hubbard was the smallest sample that would give representative results. Rabak (2) offered a more practical method by which 20-gram samples were heated to 105° C. for six hours to destroy the stickiness of the lupulin so that the hops could be threshed by pulverizing between the palms of the hands and the seeds then screened out. This method limits the output of a commercial laboratory to the capacity of its ovens.

Materials and Methods

An experiment was set up for the purpose of developing a more practical method for arriving at seed percentages. Three lots of hops appearing to vary in seed content were selected. Ten-gram samples from each of these lots were subjected to two types of treatments to destroy the lupulin. In one treatment the samples were exposed to various temperatures for one to six hours; in the other they were dipped in alsohol and then dried. From this experiment, the following methods were selected as the most promising: heating at 105° C. for six hours, heating at 115°C. for two hours, and the alcohol-solvent method.

A second experiment was set up to determine the comparative accuracy of these three methods. From each of five different lots of commercial hops, three sets of five 20-gram samples were selected to be treated by each of the three methods. The samples were taken from hop bales and accurately weighed to 20 grams. All stems, leaves, and portions of leaves more than 1/4 inch in diameter were picked out and weighed to .01 gram, and the percentage determined. In the first experiment it had been found that it was more practical to separate the stems and leaves before heating or dipping in alcohol, as the leaves were less likely to be broken and therefore more easily removed. The samples to be heated were placed in covered skill cans and heated in a thermostatically controlled electric oven in which the temperature would be controlled with an accuracy of $\pm 2^{\circ}$ C.

(1) Dr. S. S. Epstein and Dr. W. S. Hubbard, The American Brewer, June, 1936.

(2) Rabak, F., Relation of Seeds, Leaves, and Stems to the Quality of Hops and Malt Beverages. Printed and distributed by Materials Improvement Committee, Master Brewers' Association of America. The individual samples for the alcohol solvent method were placed on two-foot squares of muslim or cheesecloth, and immersed in a quart bowl of methyl alcohol for one minute. The excess alcoholwas pressed by hand from the sample and retained for further use. Rubber coated gloves were used to protect the operator's hands from the staining effect of the alcohol and lupulin.

The cloth containing the hops was next spread out to dry on a screen over a steam radiator. Breaking up the cones and stirring them occasionally speeded up the drying process. Twenty to thirty minutes were required for drying.

Identical methods of threshing were used for all treatments. The cones were pulverised between the palms of the hands, and the shaff separated from the seeds and strigs, or central stems of the cones, with a laboratory fanning mill. The seeds were readily separated by screening out the larger strigs, then placing the seeds and remaining strigs on an incline and manipulating in such a manner that the seeds rolled off while the irregularly shaped strigs do not. The seeds and strigs were weighed separately and their percentages by weight determined. The weight per 1000 seeds was determined for each treatment.

Experiment Results

Results of the preliminary trials are shown in Table I. This experiment indicates that heating at higher temperatures for shorter periods of time is comparable to the six-hour treatment at 105° C., and that the alcohol-solvent method compares favorably with the heat treatments. The variations in seed percentages, though small, indicated that the 10-gram samples were too small.

Table I

Comparison of Methods of Seed Determination: Preliminary Trial

		- (= A.		1	ot 45A	Lo	5 37	Let	51	
Treatment		% Seeds	Condition	X Seeds Condition		% m Seeds	Condition			
Heat,	1	55	°C.	0.0	Clickin ottober	31.9	Slichtly	14 ALW 19-0	S ± 4	o)cw
**		2	hrs.	6.5	OK	11,8	OK	16.5	S11	ightly ieky
Ħ	91	3	hrs.	7.6	OK	8.9	OK	16.1	#	11
Ħ	Ħ	Ă	hrs.	7.8	OK	12.0	OK	16.5	Ħ	Ħ
**	- 11	5	hrs.	7.4	OK	10.1	OK	17.0	OK	
Ħ	Ħ	6	hrs.	7.1	OK, Cones brown	11.1	OK	17.7	OK	
Alcoh	01		olvent	8.8	OK	11.5	OK	17.2	OK	
Ħ		~	*	6.9	OK	11.1	OK	17.9	OK	
11			**	7.0	OK	9.9	ok	17.5	OK	
11			11	8.0	OK	11.5	OK	18.9	OK	
#3			Ħ	6.8	OK	10.8	OK	18.2	ok	
				7.4		11.0		17.9	10-01:	
**P.E		\$.254	ł	.28	7	.203		
P.E	•	Z		8.48		2.61		1.18		

Trials at Higher	Temperatures	with	Lot	45A
------------------	--------------	------	-----	-----

<u></u>	11	5° C., 2 hrs.	12	O C	, 2 hrs	P		120° C.,	hr.
Wa	% Sanda	Condition	% Senda	C	maition		% Seeds	Condit	ion
NOT	00003	CONCLUZOR	00040		UANK & V 4.VAS				
1	8.2	OK	8.6	OK,	Tobacco	brown	8.1	Slightly	sticky
2	7.2	OK	8.0	OK	11	*	7.8	OK	
8	8.8	OK	8.0	ok	Ħ	*	9.2	Slightly	sticky

*Condition refers to the condition of the sample for threshing. **Probable error computed by Peter's formula. Individual percentages of seeds and strigs with averages for each sample and each treatment are shown in Table II. The data obtained from all three methods show comparable results, although the percentage of error from the two-hour heat treatment is slightly higher than from the other two methods.

TABLE II

Comparison of Methods of Seed Determination: Final Experiment

	Le	t 27	.	Lot 5	A	Lot	44	Lot	494	Lot	84
	8	9		: %	%	: %	%	1 %	% :	1 %	%
No.	Stri	s See	eds	strigs	Seeds	:Strigs	Seeds	strigs	Seeds	Strigs	Seeds
				EA.	cohol-	Solvent	Method	L.			
•	8.6	4.	n	8.5	7.7	8.0	8.6	8.9	15.0	7.6	19.7
.⊥ 9	7.5	5.	9	9.9	7.9	8.0	9.0	8.9	15.4	8.5	20.8
3	7.4	4.	1	10.2	8.4	8.3	8.1	9.2	15.5	8.4	20.3
4	8.7	4.	ī	9.7	7.8	7.4	10.3	9.0	15.5	8.9	20.0
5	8.3	3.	8	10.2	8.1	7.9	10.1	9.6	16.5	7.7	21.3
Ave.	8,1	4.	0	9 "7	8.0	7.9	9.2	9.1	15.5	8.2	20.4
P.E. 4	.23	57	042	.203	.093	5 ,093	•33(.093	.1	18 .194	.211
P.E. 🕇	2.9	5 1.	05	2.09	1.16	1.18	3.59	1.02	0.7	5 2.37	1.03
1000 se	ed wt.	3.	92 g	ζ	4.23	<u> </u>	3.64	<u> </u>	4.1	0 g	<u>3.27</u> g
				Heat a	at 115'	C. for	Two He	ours			
1	7.8	4.	1	9.1	8.9	7.5	8.0	7.5	15.0	9.0	22.0
2	8.5	3.	8	8.0	8.0	7.2	9.0	5.1	13.2	8.2	19.8
3	8.1	4.	6	7.8	9.5	7.4	8.7	8.2	15.5	7.1	20.6
Ă	8.1	3.	8	6.5	8.2	5.0	10.1	6.5	15.8	8,8	21.4
5	8.4	4.	2	7.5	7.5	6.0	8.4	6.7	16.1	7.8	19.0
Ave.	8.2	4.	1	7.8	8.4	6.6	8.8	6.8	15.1	8.2	20.6
P.E. 4	•0	95 .	101	.262	.26	2 .380	.23	7 .355	.3	46 .245	•389
P.E. 7	1.1	52.	46	3.36	3.12	5.76	2.69	5.22	2.29	2.99	1.89
1000 se	ed wt.	3.	70	٤	4.44	Б	3.70	<u> </u>	4.30	<u>s</u>	<u>3.14</u> g
				Heat	at 105	° C. for	Six H	ours			
1	7.1	4.	0	9.2	8.1	5.0	8.3	5.6	13.3	7.5	20.6
2	6.7	3.	.8	7.2	8.0	4.8	8.4	7.0	13.2	7.4	19.7
3	8.2	4.	4	8.6	8.2	5.3	9.5	7.4	13.6	7.1	19.4
4	8.3	4.	8	8.0	7.4	6.6	9.4	6.1	13.7	7.4	19.0
5	8.0	3.	9	8.4	8.1	7.5	8.5	7.2	14.2	7.0	19.9
Ave	7.1	4.	2	8.3	8.0	5.8	8.8	6.7	13.6	5 7.3	19.7
P.B. 4	.2	53	144	.228	.08	4 .406	.21	.1 .270		.18 .076	.177
P.E. 🕺	3.2	8 3	43	2.75	1.05	7.00	2.40	4.03	0.87	1.04	0 .90
1000 =	ad wt.	3.	.93	2	4.36	g	3.74	5	4.08	B	3.36

For convenience, the averages from Table II are summarized in Table III.

Table III

Summary of Table II

Comparison of the Averages of the Three Methods

	Alcoh	bl So	lvent	: Heat,	1150	C., 2 hrs.	: Heat,	105° C	., 6 hrs.
Average	% : by wt.:	% P.E.	: 1000 :Seed wt.	: % :by wt.	: % : P.E.	: 1000 .:Seed wt.	1 % 2by wt.	: % : P.E.	: 1000 :Seed wt.
Seeds Strigs	11.4 8.6	1.52	3.85 g	11.4	2.49 3.69	3,86 g	10.9 7.2	1.73 3.62	3.89 g

Discussion

The percentage of probable error indicates the variations within each of the different methods, part of which is the result of variations in sampling. The low percentage of error in all cases indicates that all of these methods are reasonably accurate.

Results of the heat trials indicate that the two-hour method at 115° C. is as accurate as the six-hour method at 105° C. One advantage of the former is that it will enable a laboratory to analyse four times its oven capacity in an eight-hour day. Where oven space is the limiting factor, this is a decided advantage over the six-hour method.

The alcohol-solvent method gave results comparable to those obtained from the heat treatments. The determination of strigs by this method appeared to be slightly more accurate, as indicated by a lower probable error. An important advantage of the method is that no oven is required, and the work can be done wherever facilities are available for drying. In the opinion of the senier author, who conducted most of the actual trials, samples treated with alcohol threshed more easily and were more satisfactory to handle. Heating appeared to cause parts of the bracts to adhere to the seeds, thus interfering in threshing.

The alcohol-solvent method was adopted by the Oregon Experiment Station. It was used on approximately 1000 samples from more than 300 different lots of commercial hops and gave satisfactory results. Results were entirely satisfactory. Experience shows that one man can determine the percentages of stems, leaves, seeds, and strigs of twenty-five 20-gram samples in one eight hour day, using only three pints of methyl alcohol.

Summary and Conclusions

To determine accurately the percentage of seeds in commercial hops, the lupulin must be removed. Lupulin is the sticky, yellow material which adheres to the seeds and the bases of the bracts making accurate separation difficult. Methyl alcohol used as a solvent appears to be the most satisfactory method of those tried. The short time and the small amount of equipment and materials required, the simplicity of the method, and its accuracy are definite advantages. This method is definitely more accurate for determining percentages of strigs than the heat methods, which tend to cause the strigs to become so brittle that they break and are lost in threshing.

Heating two hours at 115° C. appears to be as satisfactory as heating six hours at 105° C.

Twenty-gram samples are easy to handle, and according to the probable errors obtained they are sufficiently accurate to be dependable.

.

In addition to the development of the methods reported above, an attempt was made to determine seed weight by counting the number of seeds in a given area. Therefore, seed counts were made on an area of 2.25 square inches on the face of each sample. These counts were then converted into seed weights by means of the factor that was developed. In addition, as it became apparent that seed varied in weight, an attempt was made to classify them as to color, as it was found that seed weights and seed colors were related.

Stems and leaves were determined by picking out the stems and leaves by hand from a given sample, normally 20 grams. At the same time, counts were made as to the condition and sizes of the hop cones. The percentages of whole and broken cones were noted for each sample.

No consideration normally is given to the percentage of strigs or central axis of the hop cone. It was found in these studies that this percentage varied rather widely and it appeared that this appearance might be a useful figure in evaluation.

Color of the hop samples was determined by means of the Munsell color machine. Color determinations were made on all samples which were of 2.

sufficient size to make a color reading possible. Color is reported in terms of hue, chroma and brilliance.

Results of the physical analyses are given in Tables 5 and 4. The following is offered in explanation of the various characters indicated in this table. The count refers to the number of seed found in 2.25 square inches of surface on the face of the sample. These include the individual counts as well as the average. The seed weight in grams is given, the percentage by weight and the estimate as to the percentage of dark-colored, medium-colored and light-colored seed showing in the cut surface. The percentage of seed calculated from the count is that determined in accordance with the factors determined for the varying percentages of dark and light-colored seed. The percentage of leaves and stems is shown in a separate column. The cones are indicated as per cent whole and per cent broken and the size is classified as small, medium or large. The percentage of strigs (the central axis of the cone) is that determined from actual weight. Finally, the color is given for part of the samples under the headings of hue, chroma and brilliance.

The factors shown in Tables 3 and 4 indicate wide variations between samples. Data on foreign material and strigs are shown in Table 5 and in Fig. 1. These show, for example, that approximately 9 per cent of the total samples had 1 per cent by weight of foreign material and approximately 1 per cent of the samples had 12 per cent by weight of foregin material. For the majority of the samples the foreign material content ranged from 2 per cent to 8 per cent. The percentage of strigs was somewhat higher than that for foreign material. In approximately 80 per cent of the samples the percentage of strigs ranged from 5 to 10 per cent, inclusive.

The distribution of samples in relation to seed weight is shown in Table 6 and in Fig. 2. This shows a somewhat wider distribution than was found for either foreign material or for strigs. For example, 10.64 per cent of the samples had seed weights varying to 1 to 5 per cent, 14.34 per cent of the samples had seed weights ranging from 16 to 25 per cent, threefourths of the samples had seed weights which ranged from 6 to 15 per cent inclusive. This wide range in percentage of seed represents a variation in quality that normally is not measured by present methods of evaluation.

				T	able a	3					
ANALYSES	OF	HOP	SAMPLES	OBTAINED	FROM	PACIFIC	HOP	GROWER,	INC.	1937	
				В 🗕	BISH	OP		·			

				2 / - Alia				See	ds	19-19-19-19-19-19-19-19-19-19-19-19-19-1		%	of seeds	%		Cones		Per	(lolor	
			Cot	mt			1		Dark	Med.	Light	ca	lculated	Stems,	%			cent		Chro-	Bril-
No.	1	2	3	4	5	Ave.	Gram	70	Est.	% by	count	fr	on counts	Leaves	Whole	Brk'n	Size	Strigs	Hue	TOPA.	lience
1	7	11	6	5	6	7.2	1.18	5.9	60	30	10		6.91	8.35	28.	63.7	M	5.75			
2						10.2	3.15	15.75	60	10	30		9.79	3.62	17.2	79,78	M	8.75			
3						17.	2.58	12.9	10	40	50	٧.	Sm. seeds	17.	7.75	85.25	S	7.35			
8	17	14	19	14	15	15.8	1.6	8.	60	10	30		15.17	4.73	26.1	69.17	M	6.5	7.91	3.44	5.63
9						12.8	2.83	14.15	50	2 0	30		12.29	4.8	17.53	77.65	M	6.8			
12	4	7	7	1	2	3.6	.45	2.25	50	20	30 3	•45	L. seeds	5.7	42.5	51.7	M		8.00	4.00	5.88
14						11.6	3.55	17.75	60	30	10		11.13	1.75	14.	84.25	SM	6.5	7.80	4.00	5.88
15						15.8	1.64	8*2	30	40	30		13.90	3.55	6.15	90.35	SM	7.85	8.65	2.96	5.28
16						8.2	1.63	8.15	60	30	10		7.87	5.4	16.9	77.7	SM	6.3			
20						6.2	1.96	9.8	60	20	20		5.95	5.	36.1	58.9	L	9.			
25						2.6	1.38	6.9	50	30	20		2.50	4.87	48.75	46.38	ML.	9.	7.68	4.48	6.35
26						8.6	3.12	15.6						5.5	14.85	79.65	S	7.			
27						14.8	3.55	17.75	80	10	10		16.43	3.2	18.4	78.4	SM	6.5			
30						9.	2.13	10.65	60	30	10		8.64	3.62	15.67	80.71	M	8.75	6.38	3.76	5.63
31						5.8	2.22	11.1	70	15	15		6.44	4.85	43.	52.15	ML.	6.8	8.73	4.40	6.08
32	6	4	6	5	9	6.	2.62	13.1	6 5	25	10		5.76	1.75	38.15	60.1	IM	7.2			
33						16.4	3.38	16.9	45	20	35		15.74	6.	26.	68.	M	7.5			
34						15.6	3.47	17.35	90	5	5		17.32	4.1	19.5	76.4	SM	6.5			
36						5.	1.77	8.85	30	30	40		4.40	7.35	39.7	52.95	M	7.4			
37	7	9	5	5	5	6.2	2.22	11.10	40	40	20 5	.95	L. seeds	4.25	41.5	54.25	M	7.5	8.37	4.08	6.12
38						2.2	.47	2.35	40	40	20		2.11	12.65	37.7	49.65	S	5.85	<i>.</i>		
40						2.	.7	3.5	40	20	40		1.92	5.4	32.75	61.85	M	6.6			
42						16.	3.47	17.35	70	20	10		15.36	8.4	58.1	33.5	SM	8			
43						10.	3.4	17.	6 0	20	20		9.60	4.95	41.6	54.84	M	8.85	6.81	3.76	5.76
44	6	3	6	4	3	4.4	1.	5.	40	30	30		4.22	5.8	41.45	52.75	M	7.5		1	4
45	4	2	5	3	6	4.6	1.2	6.	40	40	20		4.42	11.5	38.25	50.25	M	7.35	7.00	3.20	5.40
47	4	1	5	4	2	3.2	.44	2.2	50	40	10		3.07	2.3	25.45	72.25	SM	7.1			

32.

										·	Ta	ole 3 (cont.)							
								Se	eds			% of seeds	%		Cones		Per	(Color	
			Co	ont					Dar	k Med	.Light	calculated	Stems,	%			cent		Chro-	Bril-
No.	1	2	3	4	5	Ave.	Gram	%	Est	.% by	count	from counts	Leaves	Whole	Brk'n	Size	Strigs	Hue	m e i	liance
48	11	10	12	10	11	10.8	2.35	11.75	60	20	20	10.37	4.55	35.45	60.	SM	7.3	6.59	3.28	5,46
49	4	8	4	5	8	5.8	2.33	11.65	40	30	30	5.57	4.	38.7	57.3	ML	8.3			
50	4	5	6	7	3	5.	1.45	7.25	30	20	50	4.40	6.45	28.25	65.3	M	9.4	6.43	3.44	5.54
51	8	19	16	21	17	16.2	3.75	18.75	80	10	10	17.98	3.12	29.	67.88	LM	8.	7.32	4.48	6.12
52	8	10	10	6	8	8.4	2.5	12.5	30	40	30	7.39	1.92	11.1	86.98	M	9.4	6.67	3.36	5.67
53	13	17	13	18	19	16.	3.78	18.9	30	40	30	14.08	4.15	24.85	71.	SM	5.65			
54	7	8	9	8	7	7.8	1.25	6.25	50	20	30	7.49	4.4	33.2	63.4	MI.	7.15	7.20	4.00	6.00
58	21	14	21	25	17	19.4	3.27	16.35	30	20	50	17.07	2.	13.25	84.75	M	7.35			
62		-3	8	6	8	6.6	2.8	14.	80	10	10	7.32	5.	63.55	31.45	L	8.1	7.20	4.00	6.17
63	13	14	23	9	13	14.4	4.07	20.35	80	10	10	15.98	2.3	40.85	56.85	ML.	8.15			
64	- 8	-6	11	8	5	7.6	2.19	10.95	80	10	10	8.44	6.35	16.25	77.45	SM	8.85	7.38	3.36	5.63
65	6	7	īī	9	5	7.6	1.74	8.7	70	20	10	8.44	8.	16.1	75.9	M	10.5			
66	5	3	4	3	3	3.6	2.09	10.45	80	10	10	4.00	7.1	34.	58.9	М	10.65	5.72	3.76	5.72
68	6	7	11	10	8	8.4	2.15	10.75	60	10	30	8.06	5.	24.6	70.4	SM	10.15			
73	7	8	4	12	5	7.2	1.78	8.9	80	10	10	7.99	2.4	22.85	75.75	SM	7.85	7.45	3.76	5.91
75	3	7	5	8	9	6.4	2.2	11.	50	30	20	6.14	3.	14.15	82.85	ML	8.85	7.96	4 40	6.08
79	3	4	7	7	9	6	1.73	8.65	50	20	30	5.76	7.8	18.85	73.35	М	9.1	6.46	3.84	5.88
80	7	3	13	4	6	6.6	3.04	15.2	70	10	20	7.33	1.6	46.7	51.7	M	8.5			
81	3	3	3	3	3	3	7	3.5	40	40	20	2.88	6.1	35.	58.9	SM	8.65	6.59	8.52	5.58
82	-	•	•	•	-	-			~~~											
83	5	13	8	5	12	8.6	2.38	11.9	60	20	20	8.25	5.1	16.5	78,65	SM	10.55			
83A	7	9	12	12	10	10	1.61	8.05	30	50	20	9.60	11.25	18.5	70.25	SM	10.15			
84	1	1	6	3	4	3	1.2	6.					8.6	39.	52.4	SM	10.5			
87	14	16	25	20	17	18.4	3.86	19.3	80	10	10	20.4	1.4	13.	85.6	ML.	10.25	7,44	3.44	5.67
88	27	17	30	20	28	24.4	2.92	14.6	20	30	5 0	21.47	5 .6	25.5	68,9	ML.	8.3			
89	14	6	17	7	10	10.8	2.62	13.1	70	20	10	11.99	2.	19,75	78.25	M	8.75	6.89	3.60	5.76
97	7	3	7	5	5	5.4	2.33	11.65	60	20	20	5.18	4.1	27.5	68.4	ML	10.1			
98	5	11	12	6	7	8.2	2.	10.00	40	10	50	7.87	7.	9.	84.	SM	12.3	6.09	3.68	5.72
148	12	10	8	9	8	9.4	2.27	11.35	80	10	10	10.43	6.5	44.	49.5	М	11.15			
156	9	11	6	5	9	8	1.95	9.75	70	20	10	8.88	4.4	37.	58.6	ML.	8.5	6.67	3.52	5.80
157	9	9	8	17	9	10.4	2.34	11.7	70	10	20	11.54	5.75	38.6	55.65	ML.	8.4			
158	6	5	7	9	7	6.8	2.32	11.6	80	5	15	7.55	4.6	14.78	80.65	SM	7.9	6.98	3.44	5.92
159	7	5	6	3	8	5.8	1.23	6.15	6 0	20	20	5.57	6.15	21.35	72.5	SM	7.7	7.62	3.36	5.46
160	5	2	3	4	3	3.4	1.13	5.65	60	30	10	3.26	5.5	44.5	50.	SM	9.05	8.29	3.28	5.46
162	4	6	5	5	3	4.6	2.	10.	80	10	10	5.1	4.55	15.7	79.75	M	8.			

Table 3 (cont.)

											Ta	ble 3 (cont.	•)			*				
								Se	eda			% of seeds	%		Cones		Per	0	olor	
			Cot	int				<u> </u>	Dark 1	fed.	Light	calculated	Stems,	%			cent		Chro-	-B-11-
No.	1	2	3	4	5	Ave.	Gram	%	Est.%	by	count	from counts	Leaves	Whole	Brk'n	Size	Strigs	Hue	108.	liance
			-	-		Er	0 50	10.0	90	20	10	6 99	72 7	25.0	71 1		9 1	7 11	3 60	5 67
163	5	7	7	5	4	5.5	2.00 0 7	14.9	00	10	10	0.22 5.77	0+1. 17	10.8	11+1 775 5	1.	7 25	7.09	4.40	6.28
166	4	3	9	4	6	0.2	2.1	10.0	00	10	20	0.11	7 95	12.0	10.0	RL RL	8.6	7.00	4.00	6.00
167	6	0	6	3	· 0	0.4	1.44	1+G A E	00	10	20	4 00	7 6	AT CE	AQ 75	141 16 1	0.0 8 65	6.33	3.02	8.08
168	4	2	0	Ţ	G A	0.0	•9	4.0 0	00	10	20	A A 2	0.5	97 E	20.10	MT	8 5	0:00	0.50	0,000
169	0	7	Ö	4	÷	4.0	1.0	9. 17.05	80	10	30	****	7.0	220	69 A	14	20			
170	3	4	7	7	10	5.0	6.01	11.00	10	40	10	4 00	2.9E	7 1	20 65	S	10.0			
171	4	6	6	4	6	5.2	1.47	7.55	50 60	40	10	5.97 0 CA	0460	7.41	70 00	N.	7 95			
172	5	3	Z	3	2	3.0	•78	9•9	20	30	50	C.04	0+60	14.	19+00	<u></u>	1.00	6.17	3.76	5.88
174	10	8	8	10	13	9.8	n 4	3.0	50 70	20	20 70	7.11 / 07	1 95	20 C	70 16	B.S	05	U+1 I	0.00	0.00
175	3	4	5		9	5.6	2.4	12.	3U 80	40	30	4.90	3.460 E 72	10.0 1	10.10	in Re	9.0	6 60	4 00	6 19
176	12	14	16	- <u>7</u>	17	13.2	2.5	12.0	70	10	20	14.00	3. 25	40 75	49.20 50 0	Tat	0. 6 76	0.00	X .	OPIN
185	1	4	Z	3	1	2.0	-02	20	10	10	10	6.7 <u>7</u>	11+00	20.10	50	25	7 5	e 80	4 00	6.08
187	16	9	20	23	TS	16	2.1	19.0	50	20	20	10.00	0.10	01.0	00 12	121 Ne	/ ±0	5 51	3 02	6 00
188	4	4	9	7	.9	6.0	1.24	0.2	3U 80	40	30	0+01	6.01	0,0	70 05	51 161	***i E 17	C EC	2 00	5 07
189	8	4	8	6	10	7.2	22.1	6.1	70	10	20	1.99	0.1 7.0	20.20	16.60	D M	0*1	0,00	0.00	0.01
190		-	-	~		6.3	2 1 48	7.4	86	-	00	* 00	11.04	07 4	49.00	1991.	7 0	5 64	2 19	E 99
191	3	Ţ	3	8	4	_ చ ₊ర	1.60	9.20	75	0	20	4.66	1+0	ZIAN C	50.00 E0 7		1 • J 1 • J	0.01	0.14	0.5.66
192	2	5	z	4	4	3.4	•67	3.30	40	30	3U 70 T	02.60	0. 0. 0.	30,0	00.1		**1 E E		9 50	-
193	3	3	4	2	2	2.8	•68	3.4	60	10	30 L.	seeds 2.69	0.Z	29.3	60.0 50.05	035	0.7	1+61	3.02	0.00
194	7	3	2	3	6	4.2	.84	4.2	70	15	15 L.	seeds 4.00	4.20	40.0	02+20	5M **	0.1	a		E 09
195	- 7	5	8	7	15	8.4	2.9	14.5	70	20	10	9.32	7.75	21.9	70.35	R. C	5.4	6.98	0.44	0.03
196	8	10	13	10	16	11.4	4.3	21.5	60	20	20	10.94	7.65	34.30	58.	ຽ	0.00	m 04	4 00	E 00
197	14	9	8	10	15	11.2	2.02	10.1	10	20	70	9.86	10.	10.2	79.8	**	1.12	7.04	4.00	0*30 E 04
198	27	18	27	20	23	22.4	2.94	14.7	10	30	60	19.71	Z.5	9.2	80.3	M	10.00	0.10	0.96	0.09
199	12	6	10	9	6	8.6	1.97	9.85	20	60	20	7.57	2.5	20.3	77.2	141 3 5	11.	7.24	4+04	0.00
200	10	9	4	14	5	8.5	3.67	18.35	60	20	20	8.16	5.3	19.	75.7	A.	10.75	0.00	4.0%	0+00
201	9	2	11	6	11	7.8	1.32	5.6	60	10	30	7.49	2.55	7.5	89.95	GM	5.65	6.74	9.00	0,*00
202	6	14	15	14	12	12.2	1.42	7.1	80	10	10	13.54	3*	24.5	72.5		-		***	5 AM
203	28	26	35	23	19	26.2	5.00	25.00	80	10	10	29.08	1.75	22.25	76.	M	7.25	6.28	3.44	0.00
207	9	12	14	13	8	10.8	2.45	12.25	75	10	15	11.99	5.	20.	75	M	13.1	6.53	3.92	5.92
208	11	5	13	11	10	10	2.35	11.75	8 0	10	10	11.10	6.25	31.9	61.6	L	9.25	5.96	3.76	5.80
209	15	16	12	13	13	13.8	1.7	8.5	30	60	10	12.14	5.	17.	78.	ML	7.			-
213	3	9	11	7	10	8.	2.2	11	75	15	10	8.88	2.	19.5	78.5	S	9.15	6.28	3.44	5 .63
215	25	25	27	17	25	23.8	4.	20.	70	20	10	26.42	1.25	17.	81.75	M	10			
216	18	16	11	11	10	13.2	2.75	13.75	50	10	40	12.67	5.	23.	72.	ML	10.75	7.45	3.76	5.84
217	14	5	11	5	11	9.2	2.47	12.35	50	10	40	8.83	2.75	34.2	63.05	M	8.5			
218	10	7	13	9	12	10.2	3.	15.	80	10	10	11.32	2.25	28.38	69.37	М	11.	6.51	3.44	5.54

-							فخاره ويسيب بالكاباة				T	able 3 (cont.	•)							
			~					S	eds			% of seeds	%	C	ones		Per	C	olor	an a
NT			00	unt				-1	Dark	Med	.Light	calculated	Stems,	%			cent	- الاندلان بيلاد	Chro	-Bril-
NO.	1	ž.	3	4	5	Ave.	Gren	1 %	Est.%	by	count	from counts	Leaves	Whole	Brk'n	Size	Strigs	Hue	ma	lianon
219	12	15	15	12	9	12.6	1.55	7.75	30	40	30	11 00	1 75	10 00	00	~	10.0			**************************************
220	15	14	15	13	37	13.6	3.45	17.25	70	10	20	11.09	4. 10 0 /m	17.20	78.	5	10.8	~ ~ ~		-
221	14	12	12	13	17	13.6			80	10	10	15.09	6,,00	20.20	74.12	ыL.	8.6	5.68	3.52	5.63
228	7	8	9	12	6	8.4	2.62	13.1	80	10	10	9.32	4 39	6 70	06 0A	CIS	10 55			
232	6	7	7	0	3	4.6	1.32	6.6	70	20	10	5.10	6 25	28 6	00+6 2	C C	16.00	7.00	4.00	5.95
233	4	3	3	5	5	4.	1.19	5.95	60	10	30	3.84	10.75	20.0	50 es	o M	12.0 0 7E	0 00	**	E 40
235	5	8	6	5	4	5.6	1.25	6.25	70	20	10	6.22	3.5	72.0	24 5	184. 7	3+10 0 0	0.07	0.00	0+40
241	15	8	13	18	14	11.6	2.45	12.25	80	10	10	12.88	6 25	A7 05	6240 AG 7	T.	0+6 7 95	0.01 5 07	3.00	0.67 5.00
242	10	11	3	10	5	7.8	1.76	8.8	40	30	30	7.49	7.	32.5	±0.1	MC	0 65	0.00	0002 7 002	000 5 00
243	2 8	25	30	21	19	24.6	3.98	19.9	60	30	10	23.61	5.5	30 35	64 15	AB.)	0.00	0+90	0.00	9*00
247	12	22	13	17	20	16.8	3.03	15.15	30	50	20	14.78	6.25	30.00	63 75	7.7	7 75	6 30	8 20	E 04
249	- 8	9	14	12	7	10.	2.09	10.45	20	40	40	8.88	6.	38.	56	SM	7 7	5 27	0+00 7 90	0.0% 5 40
251	12	3	11	10	13	10.8	2.38	11.9	60	30	10	10.37	5.	22.5	72.5	M	8 65	6 22	0340 8 AA	0.40 6 0A
252	16	16	22	14	5	12.6	2.6	13.	45	45	10	12.10	4.	28.7	67.3	1.	7.25	0.00	0.111	04.0%
253	10	7	13	19	13	10.4	2.1	10.5	70	15	15	11.54	1.	59.	40	S	8 35	7 65	л	5 09
265	4	4	9	4	2	4.6	1.15	5.75	60	30	10	4.42	12.5	28.1	59.4	Ň	7 0	(100	**	0.00
266	11	9	3	10	7	8.	1.8	9.	10	60	30	7.04	6.	59.	35.	Ī.	9.55	7.78	4.32	5.88
281	6	2	4	6	4	4.4	•98	4.9	70	20	10	4.88	5.9	48.65	45.45	M	7.4			0100
284	10	15	7	7	10	9.8	1.55	7.75	10	30	60	8.62	14.8	41.5	44.7	L	9.25	6.17	3.76	5.88
292	16	14	12	9	16	13.4	2.52	12.6	40	30	30	12.86	5.25	50.47	44.28	LM	4.85	6.25	3,84	5.84
301	17	7	11	13	16	12.8	3.14	15.7	60	30	10	12.29	6.	34.	60.	MS	7.15	7.04	3.52	5.94
317	11	8	8	10	8	9.	2.	10.	80	10	10	9.99	8.9	22.5	68.6	M	5.65	7.11	3.60	5.76
319	13	6	7	4	10	8.	2.7	13.5	60	20	20	7.68	8.6	20.7	70.7	S	8.1			
320						4.8	1.92	9.6	80	10	10	5.33	10.	41.5	48.5	M	8.85	6.25	3.20	5.48
332	36	28	38	23	18	28.6	3.71	18.55	70	10	20 S.	seeds 31.74	2.5	26.	71.5	MS	7.9			
339	9	16	9	18	12	13.	2.53	12.65	70	20	10	14.43	5.4	23.85	70.75	ML	6.5			
356	12	14	7	10	6	9.8	1.53	7.65	75	10	15	10.88	3.75	50	46.25	M	8.7	7.96	3.52	5.76
360	7	7	14	12	6	9.2	1.82	9.1	80	10	10	10.21	2.53	26.6	70.87	М	6.65	6.19	3.36	5.67
374	18	10	10	6	15	11.8	2.9	14.5	80	15	5	13.10	8	45	47	S	7			
396	2	1	2	3	2	2.	.29	1.45	2 0	30	50	1.76	7.85	61.95	30.2	M	4.1			
403	14	9	7	12	8	10.	1.8	9.	40	50	10	9.60	5	46.5	48.5	MS	8.85	6.10	3.28	5.40
406	9	14	14	10	15	12.4	3.05	15.25	80	10	10	13.76	5.6	30.25	64.15	ML.	8.85	7.73	3.52	5.84
410	15	9	18	14	20	15.2	3.02	15.1	80	10	10	16.87	4.5	32	63.5	MS	9.			
454	5	3	5	4	6	4.6	1.27	6.35	80	10	10	5.11	7.	56	37	-	8.25	6.04	3.84	5.96
455	5	7	.9	10	5	7.2	1.35	6.7	80	10	10	7.99	4.9	37.5	57.6	S	6			
459	14	7	16	11	6	10.8	1.95	9.75	70	10	20	11.99	8.25	48.1	43.65	ML	7.25	5.80	4.00	5.88

•

\$5.

					_			S	eds			% of seeds	%	ande state was been after a	Cones		Per		Color	
	_	(Cou	nt					Dark	Mod.	Light	calculated	Stems,	%		- 7	cent		Chro-	Bril-
No.	1	2	3	4	5	Ave.	Gram	%	Est.%	by	count	from counts	leaves	Whole	Brk'n	Size	Strigs	Ruo	Ti R	liance
468	15	10	8	12	12	11.4	1.45	7.25	60	30	10	10.94	8,9	25.4	65.7	ML.	6.1			
485	10	7	11	10	14	10.4	1.4	7	60	20	20	9.98	5.02	50.65	44.33	L	7.15	6.33	3.92	5.92
495	5	3	5	7	8	5.6	1.8	9	50	40	10	5.38	5.25	45.	49.75	MS	5 .85			ar (r
502	13	10	12	16	14	13.0	2.3	11.5	10	20	70	11.44	5.65	43.75	50.6	ML	7.25			
503	10	13	7	13	7	10	2.27	11.35	60	10	30	9.60	8.85	57.5	43.65	SM	7.95			
506	6	10	12	12	11	10.2	1.78	8.9	80	10	10	11.32	6.	38.6		ML	8.25			
507	5	4	3	5	4	4.2	1.6	8.	70	20	10	4.66	9.	48.	43.	S	7.65			
510	3	4	4	9	6	5.2	1.8	9.	80	10	10	5.77	11.85	59.9	28.25	М	7.			
512	7	8	10	14	12	10.2	2.42	12.1	30	20	50	8.98	2.75	18.25	79.	М	8.25			
513	16	8	10	11	12	11.4	2.07	10.35	75	15	10	12.65	5.85	40.3	53.95	M	7.25	7.20	4.00	6.04
516	2	4	6	4	3	3.8	.72	3.6		*			8.65	24.6	66.75	И	6.05	9.39	3.92	5.92
519	31	29	22	35	30	29.4	3.75	18.75	80	10	10 S.	seeds 32.63	2.75	39.65	57.6	ML		7.96	3.52	5.80
521	3	1	3	2	1	2.	.31	1.55		*			11.07	49,99	38.95	SM	3.			
546	5	2	3	1	5	12.2	2.42	12.1	40	10	50	11.71	4.1	43.9	52.	М	8.45	4.24	4.16	5,97
547	12	10	11	14	15	10.4	2.52	12.6	30	40	30		7.5	51.95	40.55	ML.	8.35			
552	26	24	28	28	22	25.6	4.03	20.15	75	15	10 S.	seeds 28.42	2.1	41.35	56.55	SM		3.54	3.84	5.92
566	9	- 7	6	4	5	6.2	1.35	6.7	60	10	30	5.95	7.5	46	46.5	14s				
587	12	9	11	10	9	10.2	2.02	10.1	50	30	20	9.79	7.15	34.9	57.95	ML.	5.6			
609	6	-5	8	8	6	6.6	1.44	7.2	60	15	25	6.33	11.15	51.	37.85	ML	6.4			
610	4	6	5	10	9	6.8	1.53	7.65	60	30	10	6.53	6.8	38.6	54.6	SM	7.15	7.55	3.92	5.96
611	8	10	12	7	9	9.2	2.05	10.25	40	40	20	8.83	4.5	46.	49.5	M				
619	15	15	17	13	20	16.	2.77	13.85	60	10	30	15.36	7.6	38.	54.4	SM	7.25	6.73	3.92	5.92
550A	15	11	15	6	12	11.8	2.05	10.25	20	30	50	10.38	6.25	21.75	72	М	7.65			
550B1	9	7	16	10	12	10.8	2.32	11.6	70	10	20	12.10	11.25	30.8	57.95		7.25			
550B2	10	7	14	12	14	11.4	2.5	12.5	70	20	10	12.65	6.25	31.25	62.5		5.25			
$\frac{550B3}{161}$	8	11	10	11	4	8.8	3.15	15.75	60	30	10	8.45	4.5	19.25	76.25		4.75			

m / . .

* Couldn't read, because of sample condition.

36.

Table 4

Analyses of Hop Samples Obtained from the T. A. Livesley Co. - 1937

·	:		(Coun	ts		1	Seeds	2	% Seeds Computed	: %	\$;	Cones		\$£	*	Color		1
No.	* :1	2	3	4	5	Ave.	: : Gr.	%	D -M-L	Counts	:Leaves :Stems	: :Whole	Broken	Size	: :Strigs	: Hue	Chroma	Br.	≇ ∛ ≇
	-															7.12	4.16	6.24	
14	3	5	4	9	5	5.2	1.63	88115	20-50-30	4.58	3.5	41.	55 .8	L	8	7.78	3.60	6.32	Ave.
14	L 4	9	8	11	6	7.4	2	10.	10-10-80	6.51	3.5	38.5	5 8	M-L	° 9		~		
14	2 3	6	6	8	7	6.	1.68	8.4	20-20-60	5.28	4.25	43.5	52.25	L	7.95				
143	5 4	12	12	11	9	9.6	1.91	8.55	10-30-60	8.45	2.5	18.5	79.	N	6.7	8.80	4.00	6.31	
14	17	8	7	7	5	6.8	1.51	7.55	10-20-70	5.98	4.7	21.5	74.8	M-S	9.2	7.45	3.68	6.04	
2A	7	14	10	Б	14	10	2.05	10.25	40-40-20	9.60	3.	43.5	53.5	L	8.4	7.29	3.84	5.88	Ave.
	•			•		·					-					7.92	3.84	6.00	
34	12	10	16	16	9	12.6	2.88	14.4	50-20-30	12.10	5.75	18.25	76.	SM	8.7	6.36	3.52	5.63	
44	19	6	11	14	8	11.6	2.37	11.85	40-30-30	11.14	4.5	28.8	66.7	ML	10.5	6.53	3.92	5.84	
54	8	6	-9	18	12	10.6	2.58	12.9	60-20-20	10.18	3.4	31.4	65.2	N	9.8				
64	2	5	5	6	2	4	.87	4.35	75-15-10	4.44	8.25	30.	61.75	SM	9.25				
78	11	5	7	7	7	7.4	2.08	10.4	50-20-30	7.10	10.	40.	50.	M	10	8.09	3.76	6.08	
88	15	22	20	11	15	16.6	3.85	19.25	50-40-10	15.94	3.3	27.	69.7	S	8.7	7.44	3.44	5.72	
94	10	6	7	5	8	7.2	.8	4.	40-50-10	6.91	7.7	18.	74.3	ML	3.5	6.47	4.08	6.10	
		-	•	•	-											7.08	3.84	5.96	Ave.
94	.11	11	12	8	18	12.	2.9	14.5	70-20-10	13.32	5.25	14.5	80.45	M	9.5	6.73	3.92	5.92	
94	1 9			-															
104	5	6	6	9	6	6	1.63	8.15	70-10-20	6.66	8.75	9.3	81.95	MS	9.55	7.76	3.92	5.96	
104-	3	7	6	5	5	5.2	1.92	9.6	50-40-10	4.99	8.9	15.7	75.4	M	8.05	7.55	3.92	6.00	
104	3	15	4	5	17	8.8	1.85	9.2			8.3	35.95	55 .75	LM	6.7				
114	Ō	2	0	3	3	1.6	.51	2.55	30-40-30) 1.41	5.05	53.1	41.85	L	8.35	7.39	3.68	5.80	
1141	1	4	2	1	2	2.	.5	2.5	20-60-20	1.76	4.	47.5	48.5	M	6.				
1140	3	2	1	2	2	2.			20-20-60) 1.76									
124	9.6	7.2	10.8	9	8.4	9.1	1.88	9.4	40-50-10	8.74	5.95	33.89	60.16	M	6.11	7.02	3.96	6.00	Not
13A	15	12	10	10	6	12.6	2.75	13.75	60-30-10	12.10	7.25	28.5	64.75	ML	13.5	6.33	3.92	6.12	
																6.40	4.00	6.08	Ave.
134,	17	4	8	9	3	6.2			60-30-10	5.95									Not
144	6	6	4	4	7	5.4	1.36	6.8	10-30-60)	5	27.7	67.5	S	9.8	6.89	3.60	5.84	
154	3	8	8	8	5	6.4			60-20-20	6.14						6.67	3.60	5.84	Not

87.

										1	Table 4 (o	ont.)	÷						
	:		Co	unts			:	See	ds	:% Seeds	: 1: %	ŧ ŧ	Conss	· · · · ·		I ·	COLOR	: :;	
No.	: : 1	2	3	4	5	Ave.	: : Gr.	×	D-M-L	:from :counts	: Leaves : stems	: Whole	Broken	Size	Strigs	Hue	Chroma	Br. :	
161	20	21	14	13	7	15.	3.27	16.35	60-30-10	14.40	6.	11.	83.	M	9•	7.96 8.41	3.52 3.52	5.67 5.67	Ave.
17A	18	16	14	22	14	16.8	3.3	16.5	70-20-10	18.65	2.6	22.5	74.9	M	8.25				
17A1	21	21	17	16	19	18.8	3.9	19.5	80-10-10	20.87	2.25	38.7	59.05	-	9-7				
184	3	6	5	5	5	4.8	1.3	6.5	60-30-10	4.61	9•75	20.5	69.75	SM	9.05				
18A1	11	11	8	13	7	10	1.9	9.5	60-30-10	9.60	5.7	10.9	83.7		6.6				
19A									70-15-15	i						6.47	4.08	6.08	
20A	11	13	18	10	11	12.6	2.65	13.2	60-20-20	12.10	6.3	23.7	70	Ж	8.				
214	8	12	14	5	15	10.8	3.1	15.5	80-10-10	11.99	4.4	22.65	72.95	-	8.2	4.53	4.16	6.20	
21A1	13	9	10	12	18	10.4	3•3	16.5	80-10-10	11.54	3.9	23.1	73	MS	7.7	<1	1 - 1	1	
22A	9	12	15	10	10	11.2	2.1	10.5	30-60-10	9.86	5.9	28.7	65.4	-	1.2	6.54	4.16	6.12	
23A	9	8	12	6	9	8.8	2.2	11	45-35-20	8.45	6.2	39.8	53.	-	7.	6.67	3.60	5.67	
24A	9	7	12	6	12	9.2	1.8	9	50-40-10	8.83	5•75	38.3	55.95	-	6.5	6.78	4.08	6.12	A
			,			- 1 -				17.00	~ ~					6.48	4. 52	6. 52	AVO.
25A	17	16	16	13	.2	14.5	2.75	13.7	60-30-10	13.92	り・ り	25.5	71.2	<u>第</u> 5 14	7.5	6 04	7 40	E 00	
26A	14	10	10	1	15	11.2	3+ <i>3</i> 5	10.15	/0-20-10	12.43	2.2	72.2	14+2	麗	1.1	7 74	2.00	2.92	4
~~ .	~	,	,	10	1	Z 1	75	7 75	80 10 10	7 10	0.7	78 7	50 J.	M	1. 5	7.06	4+ C4 7 09	6 01	LAA.
2/1	8 I	0	.4	10	.4	0.4	•/2	2012	60-10-10	7.10	9•2 8 l.	20.5	52.4 61	MG	4.5	7.01	1. 20	6 16	
20A	4	4	12	10	11	1.0	2.47	12.27	70-20-20		0.4	27 8	52 A	M	6.0	1.94	4•)=	0.10	
20A1	17	17	14	10	14	10.4	2.22	10.0	70-20-10	11.07	3.8	38.7	57.5	Ň	5.8	7.76	3.02	6108	
29A	12	16	10	12	11.	10	5 ett	12.2	50-20-20	18.2	2.5	29.5	68	Ē	6.5	6.81	3.76	6.12	
CAUT	24	12	27	10	14	19	2.36	11.8	70-20-10	16.65	4.5	35.5	60	Ē	5.5		<i>J</i> , , , ,		
ZON	29	13	10	10	17	1)8	2.01	10.2	10-70-20	13.02	10.9	28.15	60.95	N	7.	6.82	3.52	5.72	
JUN	24	1)	10	***	1)	14.00	- • 04	1000	10 /0 20	2,000			//			6.08	4.08	6.08	Ave.
2011	٥٢	6	8	Q	7	8	1.9	9.5	10-10-20	7.68	12.5	32.95	54.55	L	7.7				
314	10	5	7	1/1	12	8.1	1.56	7.8	70-50-70	8.06	3.25	31.4	65.35	M	7.7	6.54	4.16	6.16	
/***	-+)	'					1.1.5							• •	7.12	4.16	6.20	Ave.
31 A 1	Q	10	11	6	1/1	10	1.56	7.8	10-20-40	9.60	4.75	27.65	67.6	M	8.	7.27	4.40	6.31	
3142	6	ġ	10	14	3	8.4	1.96	9.8	60-20-20	8.06	3.7	25	71.3	M	8.3	7.33	3.60	5.76	
32A	12	Ĺ	6	8	10	8	1.98	9.9	30-50-20	7.04	8.8	24.5	66.7	-	8.1	6.33	3.92	6.08	
32A1	3	Ē	6	8	3	4.8	2.2	11	60-30-10	4.61	5.2	21.	73.8	M	6.4				
33A	ź	ī	1	Ō	í	1	•7	3.5	20-20-60	0.88	5•7	37	57•3	M	6.	6.81	3.76	5.92	
33A1	2	1	3	0	0	1.2	•5	2.5	60-20-20	1.15	7.7	38.1	54.2	M	7.4	7.12	4.16	5.92	
344	7	6	5	6	6	6	2.15	10.7	30-60-10	5.28	8.5	34	57•5	ML	7.7	8.00	4.00	6.08	
35A	i	3	14	3	5	5.2	.92	4.6	70-20-10	5.77	6.9	14	79.1	M	6.2				ų
~ •		-	,	-	-	-													^o

										Te	.ble 4 (c	ont.)				<u> </u>			
	:						:	See.		% Seeds :	e,	*	Cones		:	Color	•	:	
	:		Co	unts	<u></u>		: <u></u>	2690	<u></u>	from :	leaves	:			:		•		
No.	: 1	2	3	4	5	Ave.	: Gr.	%	D-M-L	counts :	stems	: Whole	Broken	Size	: Strigs	Hue	Chroma	Br. :	
364	11	15	1/1	20	13	14.6	2.98	14.9	70-20-10	16.21	1.25	25.5	73.25	ML	8	7.40	4.00	6.00	
36A1	16	17	22	20	12	17.4	2.85	14.2	70-20-10	19.31	1.75	27.9	70.35	M	5.5	· .			
3642	13	10	14	10	12	11.8	2.8	14	70-20-10	13.10	1.4	52 .2	46.4	M	5.25	7.78	3.60	5.76	
36A 3	5 11	9	8	9	8	9.	2.36	11.8	70-20-10	9 .99	.2.	55.3	42.7	N	7.8	1 -1	1		
37A	14	18	17	12	15	15.2	3.02	15.1	60-30-10	14.59	1.25	<u>35</u> .	63.75	ML	11.5	6.86	4.08	6.00	
37Å1	. 17	16	19	14	15	16.2	3.5	17.5	60-30-10	15.55	2.5	45.5	52	ML	10.45	< -1	1	,	
37 42	8	17	10	16	11	12.2	3.1	15.5	70-15-15	13.54	1.25	25.6	73.15	М	10.4	6.54	4.16	6.	
3743	3 14	10	11	15	14	12.8	3.02	15.1	80-10-10	14.21	2.25	39.5	58.25	ML	11	1	/		
38A	14	15	11	12	8	11	2	10	20-40-40	9.68	3.8	20.5	75 •7	M.	8.25	6.38 6.82	3.76 3.52	5.92 5.96	Ave.
3841	Q	Q	11	11	11	10.2	3	15	10-60-30	8.98	7.5	17.7	74.8	M	7.7	2			
30 A	13	13	16	12	10	12.8	2.84	14.2	50-15-35	12.29	6.	26.6	67.4	ML	10.35	7.97	3.92	5.67	
LOA	13	$\tilde{20}$	21	17	20	14	•	•	50-30-20	13.44						7.40	4.00	6.20	
LIA	1h	11	18	1L	13	14	3.5	17.5	60-20-20	13.44	3.	18.7	78.3	SM	10.5	6.40	4.00	6.10	
121	-4	τĴ,	11	1/1	20	14	3.05	15.25	60-20-20	13.44	8.1	35.6	56.3	М.,	4.85	7.06	4.08	6.12	
4-9-8 # "		-					1									7.17	4.24	6.20	Ave.
LOAT	8	19	٦h	13	13	13.4	2.85	14.25	50-20-30	12.86	4.25	27.25	68.5	M	9.6	6.60	3.76	6.04	
1.3A	8	ĩó	5	7	12	8.4	1.3	6.5			9.3	28.5	62.2	S	6				Not
1.3A1	6	6	5	5	5	5.4	1.2	6	70-20-10	- 5.99	14.5	27.	58.5	MS	7.5				
JULA	. 12	13	13	12	20	14	3.28	16.4	50-30-20	13.44	5	31.7	63.3	M	5.65				
LIAI	20	22	18	18	15	18.6	3.55	17.7	60-20-20	17.86	3.5	20.	76.5	SM	5.				
1.5A	7		7	12	7	8.2	1.34	6.7	30-30-40	7.22	8.9	53•5	37.6	L	7.	6.40	4.00	6.00/7.	78-360-592
4900	•	-	•		•											6.38	3.76	5.92	Ave.
1543	ι 6	5	2	7	5	5	1.75	8.75	10-50-40	4.40	3.4	58.7	37.9	L	7.5				
1.6A	10	7	9	6	7	7.8	2.3	11.5	80-10-10	8.66	5.7	16.7	77.6	M	7.7	7.56	3.60	5.88	
17A	7	6	Ĺ	10	9	7.2	2.74	13.7	70-20-10	7.99	3.25	32.4	64.35	ML	8.3	6.88	3.84	6.00	
1.8A	6	12	10	6	14	9.6	2.25	11.25	50-30-20	9.22	5	19	76	SM	14.5	5.96	3.76	6.00	
	•			-			-	-								6.60	4.00	6.08	Ave.
JIGA	12	16	13	11	16	13.6	3.1	15.5	50-40-10	13.06	6	16.5	77.5	MS	8	7.33	3.68	5.84	
1.94	1 8	10	ii	-9	13	10.2	3.3	16.5	80-10-10	11.32	4.7	8.2	87.1		6.8	7.17	3.68	5.76	
50A	13	12	14	16	13	13.6	3.25	16.25	40-40-20	13.06	5.8	40.9	53•3	L	5.5	6.35	4.16	6.08	
J 000	~/					•		-								6.43	4.48	6.12	Ave.
51A	9	6	7	7	7	7.2	1.8	9	20-60-20	6.34	9.6	11.5	79.9	MS	13.1	6.00	4.40	6.80	
511	1 7	ĩ	6	Ĺ	5	4.6	1.35	6.8	80-10-10	5.11	9.	24.	67	MS	5.7			- *	
524		6	3	Ľ	6	4.4	.8	4	70-20-10	4.88	7.1	34.3	58.6	MS	4.25	6.12	3.92	5.84	
53A	18	16	23	11	16	16.8	3.	15.	70-10-20	18.65	5.25	20	74.75	MS	8	6.25	3.84	5.84	5
5LA	21	16	15	14	12	15.6	- 3•35	16.75	60-20-20	14.98	3.75	28.5	67.75	M	9.25	8.33	3.84	5.96	

											Table 4 (o	ont.)				<u></u>			
	:					:				:% Seeds	:	:		1	1			*	
	:		Co	unts			·	Seed	8	:compute	d: %	:0	nes	······!	1		3010F	:	
No.	: 1	2	3	Ŀ	5	: Ave.:	Gr.	%	D-M-L	: from : counts	: 10aves : stems	: : Whole	Broken	Size:	Strigs	Hue	Chrom	Br. :	
	<u> </u>					17.0	3.7	9 5	60-20-20	12.05	2.5	זג	84.5	S	8.5	6.86	4.08	6.16	
55A	12	17	17	1	10	12.0	1.1	17 5	60-20-20	17.1.1.	2.75	18.2	70.05	-	3.5				
55A1	19	12	12	14	12	14	<./	12.7	5-15-80	· 01 10	57	13.1	80.9	~	5.7				
56A	24	18	32	22	22	24	2.05	17.27	70-20-10	17 08	3.5	21.7	71.8	M	6.55	7.87	3.76	6.04	
574	18	12	22	15	12	10.2	4.4	$22 \cdot 1$	70-20-10	15 20	1.2	33.3	62.5	-	5.5	5.83	3.92	6.24	
58A	12	21	15	10	11	12.0	2.20	10.4	70-20-10	17.5	25	15.	82.5	M	11.6	7.27	1. <u>10</u>	6.28	
58A1	1 16	11	20	2	2	12.2	2.07	10.25	50-L0-10	11.1	2.85	25.2	71.95	SM	11.3	,,			
59A	9	10	14		12	11.0	2.11	12.55	20-40-10	0.50	1,15	28.8	66.75	M	8.9	8.18	4.40	6.80	
59A1	113	12	12	11	170	10.0	2.00	14.4	80-10-10	18.28	7.75	27.1.7	64.68	M	5.56				
60A	164	14.1	110.0	10.	17.2	10.70	2011 7 E	17.5	60-70-10	0.6	5.25	25,25	69.5	X	6.5				
60A]		11	0	2	11	10 0	2.2	1/•7	50-20-30	8.15	5	35	60	M	7.2				
61A	4	10	12	0	2	0.0	2.2	10.9	50-10-10	8.26	8.15	35,55	56.35	M	6.	6.46	3.84	6.02	
62A	. 8	8	11	0	0	0.0	2.2	10	60-30-10	0.20	q	30.25	60.75	-	Ъ	6.08	4.08	6.12	
- 62A)	1 ~		~	10	4	۵	2.4	1£ 1].	70-20-10	8.88	ล์	36.2	65.8	М	6	8.40	4.00	6.00/8	.16-3-9-6.8
03A	ゥ	9	9	12	0	0.	2.0	14	10-20-10	0.00	0	<i>J</i> UU			-	7.73	3.52	5.80	Ave.
1743		~	~	0	7	g	7	15	80-10-10	8.88	7.7	37.5	54.8	-	6	1 - 1 /			
63A.	19	.9	1	11	1.	0.6	2 55	19.75	60-15-25	9.22	6.25	33.	60.75	M	5.25	6.67	4.16	6.00	4
64A	/	12	15	11	-4 -1.	15 1	2.55	8 5	1.0-30-30	11.78	5.2	38.5	56.3		5.5	6.98	3.44	5.67	
OLIA.	1 10	19	19	9	14	17.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 75	20-70-10	5.08	5.	28	67	MS	7.65	7.32	3.28	5.63	
65A	<u> </u>	0	o Z	0	1	0.0	1.	7	60-20-20	7.68	8.35	57.05	34.6	SM	1.5	7.27	3.52	5.72	
65A.	1 5	13	0	1	.,,	0	1. 75	20 75	E5-35-10	16 32	3.05	20.2	75.85	SM	10.9	7.00	Ĺ.00	6.08	
66A	17	10	20	10	14	11	4.17	20.17	55-55-IC	10.10	1.71					6.92	4.16	6.08	Ave.
	1	•	77	-	10	10.9	76	18	20-60-20	0.50	1.0	26.5	68.6	MS	5.7	Labeled	99A	Small se	eds
66A.	1 14	8	15	1	15	10.0)•0 1 97	10 15	70-20-10	11.06	7	1.5.6	17.1	MS	8,58	5.20	Ú.00	5.84	
67A	,	,		~	-	9.90) 1.0 <i>7</i>) 9.17 10 E	F0-20-10	6.01	7 85	52.3	13.85	M	1.6	<i>J</i> = -			
68A	6	6	11	0	2	1.2	2.1	10.5	70-20-10	10.71	2.5	14.5	53	MI.	8	8.54	3.84	6.04	
69A	10	10	13	14	10	11.4	2.7	12.7	70-20-10	12.61	z 35	62.7	33.95	N	ς	8.37	3.92	5.93	
69A	1 18	15	12	20	19	10.0	2.9	14.7	- <u>70-40-</u> 20		51	7.	87.9	S	9.4				
70A	6	5	13	10	0	о г 4	2.01	14.77	F0-10-20	N 5.28	8.8	17.2		LM	5	7.17	3.68	5.88	
714	. ?	1	0	2	?	7.0	1.7	1.7		5.00	8.1	63.75	27.85	ML	7.	6.22	3.60	5.72	
71A	1 4	2	Ţ	2	4	2.4	1.07	9.C	1.0-20-20	· J•77	6.25	19	1.1.75	M	5 5	7.17	3.68	5.88	
724	10	3	.9	5	9	1+2	1.7	11. 5	70-20-2	1 1 20	7.9	35.7	57	MS	9.65	6-08	Ĺ.08	6.04	2
73A	_ 13	7	16	14	19	12.0	2.9	14•7	70-20-10) 17+76 N	105))•1	71		/••/				
73A <u>74</u> A	1 6	7	14	6	5	7.6	1.84	9.2	30-40-30	5	6.25	34.5	59 .25	M	8	7.56	3.60	5.80	

.

121

40.

	Foreign	Matorial	an set a star of the set	Strigs	
No. of	Per cent	Percentage	No. of	Per cent	Percentage of
eenno to a	by Holenio	UL VOUAL SAMULOS	DAUOTOD	by nothing	COURT DEMPTOR
14	1	5.15	3	1	1.12
30	2	11.03	0	2	
33	3	12.13	3	3	1.12
36	4	13.23	11	4	4.13
52	5	19,12	27	5	10.15
27	6	9.92	3 8	6	14.29
28	7	10.29	60	7	22.56
25	8	9.19	62	8	23.31
9	9	3,31	27	9	10.15
5	10	1.84	21	10	7.89
8	11	2.94	7	11	2.63
3	12	1.10	3	12	1.12
	13		3	13	1.12
2	14	•74	1	14	.37
27 2	Total	100.00	266		100.00

Table 5 Distribution of Amounts of Foreign Material and Strigs

Per cent of seeds by weight	No. of samples	Percentage of total samples
1	2	.73
2	7	2.57
3	8	2.94
4	7	2.57
5	5	1.83
6	21	7.72
7	17	6.25
8	20	7.35
9	24	8,82
10	24	8.82
11	26	9.55
12	21	7.72
13	13	4.77
14	18	6,61
15	21	7.72
16	12	4.41
17	10	3.67
18	6	2.21
19	4	1.47
20	Q.	1.47
21	1	•37
22	1	.37
23	0	
24	0	
25	1	<u>.37</u> 100.00%

 Table 6

 Distribution of Samples in Relation to Percentage of Seed

Relation between weight of seed and number of seeds

In order to obtain more definite information on the relation between the number of seeds in a sample and the weight of them, seed from 34 samples of hops was subjected to a further analysis. It was noted that seed from various samples varied in color from dark to light. It was also noticed that the dark seeds were solid throughout while the light-colored seeds were almost always hollow. It appeared that the color of the seed was an indication of the maturity of the hop. These differences in appearance and condition suggested that possibly the relationship between count and weight of seed could be established such more accurately if the condition and maturity of the seed were considered.

Analyses of the seed from 34 samples are given in Table 7. These figures show very clearly that the dark-colored seeds are much heavier than the light-colored seeds. The average weight of the dark colored seeds is .0053 grams per seed, of the medium seeds .0031 grams, and of the light seeds .0015 grams. In other words the medium seeds are twice the weight of the light seeds and the heavy or dark seeds are 3 1/3 times the weight of the light seed.

From these data it was possible to compute a factor which could be applied to a count appearing on the cut surface of the sample, but transforms seed counts into percentage of seed weight. The factors were figured for three groups, 70 per cent dark seeds or over, 40 to 70 per cent dark seeds, and less than 40 per cent dark seeds. The ratios between count and weight for these groupings were 1.11, .96 and .88 respectively. The calculated percentages by weight shown in Tables 3 and 4 were obtained by the use of these factors.

In order to compare the actual percentages as determined by weight and the calculated percentages were compared by Student's method. The odds determined for the three groups were 1 to 1, 2.5 to 1, and 3 to 1. These odds indicate that for the group as a whole, the difference is between the actual and calculated percentages were so slight as to have no statistical value. Despite the agreement in the averages for the group, individual variations appear to be sufficiently high as to introduce a serious error when the counting method was used on a single sample. As a result, the attempt to determine seed weights by counting the number on a cut surface was dropped from further consideration.

an in the state of	ter Höttiğenilli ofer Stended o		De	rk			Med	lium		Light			
Sample	% of		Per	Weight	Per		Per	Weight	Per	فتلقده والمعادة والروانة	Per	Weight	Per
no.	seeds	No.	cent	grams	cent	No.	cent	grams	cent	No.	cent	grams	cent
41	12.2	353	54	1.73	72	142	22	.48	20	153	24	.20	8
249	10.4	58	8	.32	15	367	49	1.21	58	329	43	.55	27
5 2	13.0	309	47	1.67	65	251	38	•74	29	102	15	.15	6
:65	5.7	149	6 6	1.00	88	54	24	.12	10	24	10	-02	2
81	4.9	132	66	.84	89	39	19	•08	9	29	15	-02	2
92	12.6	45 5	70	2.12	86	166	2 6	.32	13	24	4	.02	1
517	10.0	287	63	1.55	81	87	19	.26	14	79	18	.10	5
20	9.6	263	59	1.56	82	119	27	.29	15	65	14	.06	3
39	12.6	112	18	.75	30	266	44	1.22	49	228	38	.53	21
60	9.1	193	48	1.20	67	87	21	.39	22	123	31	.20	11
96	1.4	23	30	.16	6 4	43	57	•08	32	10	13	.01	4
06	15.2	222	25	1.17	39	499	57	1.64	54	152	18	.22	7
54	6.3	169	68	1.12	88	47	19	.12	9	33	13	.04	3
5 9	9.7	232	36	1.11	59	209	32	.55	29	207	32	.23	12
68	7.2	63	15	.33	24	288	66	.95	68	83	19	.11	8
85	7.0	33	8	.17	33	236	56	.88	67	155	36	.27	20
03	11.3	360	64	1.87	87	103	18	.17	8	104	18	.10	5
06	8.9	261	73	1.52	91	52	15	.11	7	45	12	.04	2
07	8.0	214	77	1.40	92	46	16	.10	7	20	7	.02	1
10	9.0	50	20	1.00	55	122	49	.65	36	77	31	.17	9
12	12.1	85	10	.50	21	438	55	1.42	59	280	35	.48	20
13	10.3	79	12	.45	22	310	48	1.08	54	255	40	.47	24
16	3.6	87	66	.62	93	12	9	.03	4	32	25	.02	3
19	18.7	660	48	2.20	59	451	33	1.10	29	272	19	.45	12
21	1.6	33	52	.20	74	19	30	.06	22	11	18	.01	4
46	3.8	86	41	.53	71	63	30	.13	17	62	29	.09	12
47	12.6	363	55	1.79	73	208	32	.56	23	87	13	.09	4
52	20.1	1029	82	3.57	88	199	16	.42	10	33	2	.04	2
66	6.6	134	48	.83	63	89	32	.38	29	54	20	.10	8
87	10.1	199	46	1.17	59	160	37	.66	33	69	17	.16	8
09	8.6	263	61	1.48	85	130	30	.22	13	40	9	.03	2
11	8.6	114	25	.70	39	252	56	.94	52	86	19	-16	. 9
310	7.6	164	46	.99	65	158	44	. 50	33	36	10	-04	2
519	13.8	246	29	1.19	44	400	47	1.24	45	208	24	.30	1Ĩ
			45.2		63.4		34.5		28.5		20.3		8.1

 Table 7

 Data on Variation of Color and Weight of Hop Seeds - 1937

£

Relation between Chemical and Physical Analyses

Chemical analyses from approximately 100 samples of hops were made by D. E. Bullis of the Department of Agricultural Chemistry. Results of chemical analyses are given in Tables 8 and 9. These data are shown in a report by Mr. Bullis and the only purpose of including them here is to show relationship to certain physical characteristics. An attempt was made to correlate physical characters with the total soft resins in these samples. Correlation coefficients between certain physical characteristics are shown in Table 10. As indicated in this table, there is practically no correlation between any of these characters and the soft resins. Inasmuch as these characters are used by the trade in evaluating hops, this lack of relationships between physical characters and soft resins indicates either first, that some physical characters are being over-emphasized, or second, that the soft resins have less value than is generally considered.

The lack of relationship between the physical and chemical characters of hops indicates the necessity for continuation of these studies. From the data available, it is impossible to say whether these relationships will persist in another season. Certainly, everyone is agreed that the 1937 season was rather abnormal for hop production and that the 1937 crop is not typical of the hops generally grown in this area. It will be necessary, therefore, to obtain similar data over a two or three-year period before definite conclusions may be drawn.

			Tote	1							Proservat	ive Value	,	*****	
		•• •	Resi	ns	A Res	ins	B Res:	ins	Hard Re	sins	10(A+B/)	3)			
Sample		Mois-	Origi-	-	Origi-	·	Origi-		Origi-		Origi-		No.		
no.	Variety	ture	nal	Dry	nal	Dry	nal	Dry	nal	Dry	nal	Dry	Bales	Grower	Description
31		5.64	12.76	13.51	5.04	5.34	6.46	6.84	1.26	1.33	84.5	89.5	75	Geo. Rosich	Choice, yellow
10A		5.24	15.61	16.48	6.48	6.84	8.04	8.49	1.09	1.15	91.6	96.7	65	Mrs. Lena Fessler	Good, green, medium, dirty picked
11A		5.28	16.32	17.22	8.05	8•50	7.05	7-45	1.22	1.29	104.0	109.8	31	C. E. Geelan	Good, medium, greenish, seedless type, mottled
16A	Fuggles	5.64	14.82	15.71	4.75	5.03	8.96	9.50	1.11	1.18	77.4	82.3	14	San Fewver	Poor, greenish
17A	Fuggles	5.36	16.15	17.07	5.30	5.60	9.47	10.01	1.38	1.46	84.6	89.5	78	Robin Day	Good, medium, greenish yellow
201		6.68	17.51	18.75	6.07	6.50	10.41	11.15	1.03	1.10	95.4	102.2	74	W. L. Murray & Son	Choice, greenish yellow
23A		4.84	17.60	18.50	6.38	6.71	10.16	10.68	1.06	1.11	97.7	102.5	55	Alving Thompson	Poor, greenish
24A		4.56	17•73	18.57	5.68	5.95	10.25	10.74	1.80	1.88	91.0	95.3	53	J. N. Gooding	Medium, greenish yellow
27A		5.00	17.72	18.67	5.80	6.10	10.88	11.47	1.04	1.10	94•3	99•3	62	Henry Annen	Poor, greenish, dirty picked, semi-seedless
284		4.96	17.67	18.59	6.62	6.97	9•98	10.49	1.07	1.13	99•5	104.5	67	Harold Satern	Poor, greenish yellow, dirty picked
31A		6.28	18.15	19.38	6.80	7.26	10.34	11.04	1.01	1.08	102.5	109.4	124	Arthur Goffin	Medium, greenish yellow, dirty picked
36a		6.44	17.02	18.19	6.19	6.62	9.89	10.57	.94	1.00	94.9	101.3	516	Ben Hilton (DLI.DL2)	Medium good. dull. mottled
37∧		6.56	17.51	18.73	6.18	6.62	10.39	11.11	.94	1.00	96.4	103.0	328	" " (HE1.HE2)	Poor, Yellow
<u>39</u> A		6.40	18.00	19.24	6.29	6.72	10.71	11.43	1.00	1.07	98.6	105.1	<u>4</u> 60	Fook Chung	Poor, greenish
ЦЦА		6.28	18.20	19.44	5.09	5.44	11.85	12.66	1.26	1.34	89.9	96.1	124	Jerman & Chittenden	Good, medium greenish
47A		6.32	18.42	19.67	6.33	6.76	10.95	11.69	1.14	1.22	99.8	106.5	112	V. O. Kelley	Good, medium greenish yellow
56 A	Fuggles	6.60	Щ.75	15.70	5.21	5•55	8.41	8.95	1.13	1.20	80.1	85.3	270	Dave Titus	Good, medium, greenish yellow
57A		6.32	17.31	18.48	5+37	5•73	10.66	11.38	1.28	1.37	89.2	95+3	91	Collins & Collins	Poor, greenish
59A		6.16	17.18	18.30	5.58	5.95	10.48	11.16	1.12	1.19	90.7	96.7	265	11 11	Good, medium greenish
62A		5.96	17.46	18.58	5.82	6.19	10.60	11.28	1.04	1.11	93•5	99.5	128	Robin Day	Medium greenish yellow
66A		6.56	16.97	18.17	5.24	5.62	10.46	11.20	1.27	1.36	87.3	93•5	394	Ross Wood & Hugh Nelson	Good, medium greenish
69A		6.64	16.27	17.42	5.62	6.02	9•53	10.20	1.12	1.20	88.0	94.2	62	Frank Buckley	Good, medium greenish
71A		6.24	17.07	18.20	6.31	6.73	9 •77	10.43	.•99	1.05	95•7	102.0	62	Bill Annen	Poor, medium, dull-greenish, dirty picked

 Table 8

 1937 Crop Grades and Standards - Hop Samples from T. A. Livesley & Company, Salem

 Table 9

 1937 Crop Grades and Standards - Hop Samples from Pacific Hop Growers, Inc., Salem

											Preserve	tive Value	0	••••••••••••••••••••••••••••••••••••••	
			Total 1	Resins	A Rest	Ins	B Res:	ins	Hard Re	sins	10 (A	+ B/3)			
Sample		Mois-	Origi-	*	Origi-		Origi-		Origi-		Origi-		No.		
no.	Variety	ture	nal	Dry	nal	Dry	nal	Dry	nal	Dry	nal	Dry	Bales	Grower	Description
1	Sacramentos	6.16	13.24	14.11	4.43	4.72	7.74	8.25	1.07	1.14	70.1	74.7	1000	C. L. Ross	
3	Fuggles	6.20	15.02	16.01	5.42	5.78	8.20	8.74	1.40	1.49	81.5	86.9	151	Ben Eppers	
9	00	6.24	15.56	16.60	5.23	5.58	9.20	9.82	1.13	1.20	83.0	88.6		John Grafte	
14	Fuggles	6.16	15.27	16.27	4.39	4.68	9.74	10.38	1.14	1.21	76.4	81.4	20	John Jacobs	
16	Fuggles	6.24	14.38	15.35	4.60	4.91	8.58	9.16	1.20	1.28	74.6	79.6	50	Ray Morley	
25	00	5.64	16.70	17.69	6.21	6.57	9.29	9.85	1.20	1.27	93.1	98.6	16	Chas. Swartout	
27	Fuggles	6.56	16.94	18.12	5.94	6.36	9.91	10.59	1.09	1.17	92.4	98.9	65	C. Messenger	
31	E. Clusters	6.12	16.40	17.46	5.39	5.74	9.59	10.21	1.12	1.51	85.9	91.9	32	Willamette Hop Co.	
33		6.32	17.23	18.39	5.65	6.03	10.16	11.16	1.12	1.20	91 . Ĺ	97.6	250	Mission Bottom Hop Co.	
36		5.84	15.65	16.63	5.80	6.16	8.78	9.33	1.07	1.14	87.3	92.8	300	John Morley	
38		5.64	16.39	17.36	6.05	6.41	9.23	9.78	1.11	1.17	91.3	96.3	20	John Zies	
Ĺε	Fuggles	6.20	15.54	16.56	5.12	5.45	9.42	10.04	1.00	1.07	82.6	88.0	54	John Morley	
<u>Lili</u>	00	5.84	17.53	18.63	6.77	7.20	9.74	10.35	1.02	1.08	100.2	106.4	12	John Moe	
47		5.80	17.07	18.13	6.77	7.19	9.28	9.86	1.02	1.08	98.6	104.6	14	Paul Dettwyler	
49		5.76	17.06	18.11	6.34	6.73	9.77	10.37	.95	1.01	96.0	101.8	35	Nike Zies	
51	Fuggles	5.72	17.03	18.07	5.09	5.40	10.84	11.50	1.10	1.17	87.0	92.3	22	Adolph Hari	
53		6.56	15.92	17.03	4.42	4.73	10.30	11.02	1.20	1.28	78.5	84.0	116	Downing & Stuteamen	
58		6.56	16.60	17.76	5.65	6.05	9.81	10.49	1.14	1.22	89.2	95.4	42	Ed. Harnsberger	
63	Fuggles	6.28	17.27	18.43	5.07	5.41	11.19	11.94	1.01	1.08	88.0	93.9	336	F. E. Needham	
65		6.08	16.97	18.06	5.87	6.25	10.06	10.70	1.04	1.11	92.2	98.2	<u>Ĺ</u> 3	Henry Johnson	
68		5.84	16.98	18.05	5.55	5.90	10.28	10.93	1.15	1.22	89.8	95.5	60	Emil Loe	
75		5.60	15.57	16.49	5.23	5.54	9.35	9.90	.99	1.05	83.5	88.5	19	Harold McKay	
80		5.64	17.89	18.94	5.25	5.56	11.57	12.25	1.07	1.13	91.1	96.5	175	Vinton and Loop	
83		5.56	19.17	20.20	6.09	6.45	11.97	12.67	1.11	1.17	102.8	108.8	30	Holman Bros.	
8 <u>1</u>		5.92	17.68	18.80	6.11	6.50	10.27	10.92	1.30	1.38	95.3	101.4	27	Joe Zies	
88	Fuggles	6.04	14.93	15.88	5.25	5.58	8.51	9.05	1.17	1.25	80.9	86.1	358	Virgil De Coster	
97	<u>.</u>	6.24	17.45	18.61	5.92	6.32	10.58	11.28	•95	1.01	94.5	100.8	500	F. E. Needham	
148		6.72	16.95	18.18	6.04	6.48	9.89	10.61	1.02	1.09	93.4	100.1	40	J. D. Lofgren	
157		6.80	19.02	20.40	6.12	6.57	11.75	12.60	1.15	1.23	100.4	107.7	388	Sloper Bros.	
159	Sacramentos	6.52	13.41	14.35	3.96	4.24	8.28	8.86	1.17	1.25	67.2	71.9	125	Green and Reese	
162		6.40	19.48	20.84	7.29	7.80	11.06	11.83	1.13	1.21	109.8	117.4	125	Oscar Satern	
166		6.12	19.10	20.34	6.75	7.19	11.11	11.73	1.24	1.32	104.5	111.3	51	Wenger Bros.	
168		6.16	18.84	20.07	6.84	7.29	10.28	10.95	1.72	1.83	102.7	109.4	40	Turner and Vaughn	
170		6.08	17.75	18.90	6.01	6.40	10.49	11.17	1.25	1.33	95.1	101.2	20	R. Davidson	
172		5.84	16.64	17.68	5• 历	5.68	10.15	10.79	1.14	1.21	87.3	92.8	150	Lee Quare	
175		5.52	16.89	17.89	5.18	5.48	10.53	11.14	1.18	1.25	86.9	92.0	136	Hedges estate	
185		7.16	17.12	18.42	7.09	7.63	8.94	9.62	1.09	1.17	100.7	108.4	68	A. Schar	
188		6.28	15.88	16.95	5.35	5.71	8.94	9.54	1.59	1.70	83.3	89.0	53	J. N. Gooding	
190		6.80	16.27	17.47	5.64	6.06	9.43	10.12	1.20	1.29	87.8	94.3	37	Eric Larson	
192		6.60	16.70	17.88	6.05	6.48	9.12	9.76	1.53	1.64	90.9	97•3	22	Art Brenden	
194		6.44	18.72	20.01	7.25	7.75	10.13	10.83	1.34	1.43	106.3	113.6	47	Lorelin	
196		7.88	18.28	19.85	6.29	6.83	10.70	11.62	1.29	1.40	98.6	107.0	60	A. E. Jergeson	
198		6.92	15.81	16.99	5.18	5.57	9 •3 3	10.03	1.30	1.39	82.9	89.1	270	Dave Titus	
200	E. Clusters	6.60	17.57	18.82	6.22	6.66	10.10	10.82	1.25	1.34	95.9	102.7	125	Homer Gouley	
202		7.24	19.86	21.40	5.82	6.27	12.50	13.47	1.54	1.66	99.9	107.7	180	E. A. Miller	

Table 9 (cont.)

*****							• • · · · · · · · · · · · · · · · · · ·				Preserva	tive Value			
			Total I	Resins	A. Rea	ins	B Resin	28	Hard Re	sins	10 (A -	+ B/3)			
Sample		Mois-	Origi-		Origi-		Origi-		Origi-		Origi-	<u>, , , , , , , , , , , , , , , , , , , </u>	No.		
no.	Variety	ture	nal	Dry	nal	Dry	nal	Dry	nal	Dry	nal	Dry	bales	Grower	Description
				-0 -	E 80	()0	10.70	22 ol	1 14		~~ >		100		
207		6.76	17.27	18.51	5.78	0.19	10.30	11.04	1.19	1.20	92.1	98.7	120	Robin Day	
209		7.52	15.27	16.51	5.07	5.48	9.11	9.85	1.09	1.18	81.1	87.7	38	P. C. Magnus	
215	Fuggles	7.48	16.74	18.10	4.99	5.40	10.48	11.33	1.27	1.37	84.8	91.7	27	L. S. Christoffer	son
217		8.08	17.09	18.58	4.88	5.31	10.62	11.54	1.59	1.73	84.2	91.5	50	Christofferson &	Sandgathe
219		7.44	16.77	18.12	5.40	5.84	10.32	11.15	1.05	1.13	88.4	95.4	17	F. E. Needham	
221		6.40	19.36	20.68	6.33	6.76	11.97	12.79	1.00	1.13	103.2	110.3	32	Brown Island	
232		6.84	17.01	18.27	6.45	6.93	9.51	10.21	1.05	1.13	96.2	103.3	45	Ivan Branton	,
235	E. Clusters	7.56	16.27	17.60	5.42	5.86	9.49	10.27	1.36	1.47	85.8	92.8		Roger Batt	Idaho
242	97 TL	7.12	17.15	18.47	6.25	6.73	9.84	10.60	1.06	1.14	95.3	97.4	53	Chas. Feller	
247		7.31	16.7 7	18.10	4.37	4.72	10.93	11.79	1.47	1.59	80.1	86.4	72	A. Nusom	
251		7.04	15.17	16.31	4.20	4.52	9.87	10.61	1.10	1.18	74.9	80.6	66	S. A. Varble	
253		7.04	18.76	20.18	6.45	6.93	11.17	12.02	1.14	1.23	101.7	109.4	43	L. E. Stafford	
266		7.27	16.94	18.27	6.05	6.53	9.71	10.47	1.18	1.27	93.2	100.6	81	John Brunner	
284		6.95	15.98	17.18	5.35	5.75	9.39	10.10	1.24	1.33	84.8	91.2	48	H. G. Lucht	
301		7.27	17.45	18.81	4.79	5.17	11.21	12.08	1.45	1.56	85.3	92.0	310	V. O. Kelley	
319		7.19	16.36	17.62	5.53	5.96	9.73	10.48	1.10	1.18	87.7	94.4	109	A. E. Feller	
332	Fuggles	7.27	15.09	16.27	4.16	4.48	9.86	10.64	1.07	1.15	74.4	80.2	180	Cooper & Fawver	
356	00	7.31	16.90	18.23	6.14	6.62	9.76	10.53	1.00	1.08	93.9	101.4	56	Hattie Hovenden	
374		7.35	18.34	19.81	5.65	6.10	11.45	12.34	1.24	1.34	95.0	102.6	325	Lee Hing	
403		7.19	18.07	19.47	6.61	7.12	10.32	11.12	1.14	1.23	100.5	108.2	78	Hattie Hovenden	
410		7.19	18.16	19.56	5.29	5.70	11.78	12.69	1.09	1.17	92.2	99.3	55	Chas. Chikus	
455		6.47	18.59	19.87	7.00	7.48	10.52	11.25	1.07	1.14	105.1	112.4	ii	R. Stadeli	
468	Yakimas	6.79	15.77	16.94	4.72	5.07	9.68	10.40	1.37	1.47	79.5	85.3	105	B Eslair	
Li95		6.95	17.71	19.04	6.49	6.98	10.06	10.81	1.16	1.25	98.4	105.8	34	Joe Jacobs	
503		7.08	18.31	19.70	6.39	6.88	10.70	11.51	1.22	1.31	99.6	107.2	36	Otto Lucht	
507		6.81	17.62	18.92	6.11	6.56	10.44	11.2	1.07	1.15	95.9	103.0	86	Fred Kaser	
512		6.11	16.93	18.09	4.63	4.95	11.22	11.99	1.08	1.15	83.7	89.5	55	Ralph DeSart	
516		6.32	18.14	19.37	7.25	7.74	9.84	10.51	1.05	1.12	105.3	112.4	50.	Schutz Bros.	
521		6.56	18.27	19.54	7.35	7.86	9.55	10.22	1.37	1.46	105.3	112.7	60	John Beck	
547		6.24	17.89	19.08	6.00	6.40	10.67	11.37	1.22	1.31	95.6	102.0	77	Wm. Nicholson	
550A		6.40	15.69	16.77	5.87	6.27	9.04	9.67	.78	.83	88.8	94.9	199	Mrs. Weston	
550B		6.61	17.22	18.1.3	6.20	6.6	10.12	10.83	.90	.96	95.7	102.1	199	11 11	
566		6.80	16,1,5	17.66	5.50	6.00	9,59	10.30	1.27	1.76	88.0	95.1	11.	Oral Rean	
609		6.56	16.00	17.12	5.25	5.62	0.53	10.20	1.22	1.30	81.3	90.2	110	Rria Larson	
611		5.80	17.17	18.23	6.30	6.60	9.70	10.30	1.17	1.2	95.3	101.3	66	0 J. Schlottman	
~**		2000	~! • ~ !	1000		U IV)) • (•	200 JU	→ → + 1		12•1	1010/			

: 1

Characters	Correlation Coefficient	Probable Error
Per cent whole cones - soft resins	207	+ .099
Per cent foreign material - soft resi	as .099	+ .101
Per cent dark seed - soft resins	024	+ .011
Per cent seeds - soft resins	.018	+ .070

			Table	e 10	5			
Correla	tion	Coef	ficients	Bet	ween	Cert	tain	Physical
and	Chemi	.cal	Characte:	rs c	of Hoj	os -	1937	Crop

X

.

