1963

ANNUAL REPORT

of

HOP INVESTIGATIONS (CRe5, OAES 36)

PROJ; 36

Hody

Distribution of Copies

2 Hop Investigations,

2 Oilseed and Industrial Crops Research Branch,

1 Oregon Agricultural Experiment Station, 1 Dept. of Farm Crops, Oregon State Univ.,

1 Dept. of Agricultural Chemistry, Oregon State Univ.

1 Dept. of Botany and Plant Path., Oregon State Univ.,

2 Irrigation Experiment Station, Wash. State Univ.,

2 University of California at Davis,

1 Parma Branch Experiment Station, Univ. of Idaho,

10 United States Brewers Association,

4 Authors.

1963

ANNUAL REPORT

of

HOP INVESTIGATIONS (CRe5, OAES 36)

by
Stanley N. Brooks, Research Agronomist (USDA)
Chester E. Horner, Plant Pathologist (USDA)
Sam T. Likens, Research Chemist (USDA)
Charles E. Zimmermann, Plant Physiologist (USDA)

Oilseed and Industrial Crops Research Branch
Crops Research Division
Agricultural Research Service
United States Department of Agriculture

in cooperation with the

Oregon Agricultural Experiment Station Corvallis, Oregon

TABLE OF CONTENTS	Page
INTRODUCTION	
S. N. Brooks	
CR e5-1 (OAES FC:36) BREEDING AND EVALUATING NEW AND IMPROVED VARIETIES OF HOPS.	
S_{ullet} N_{ullet} Brooks	
BREEDING AND SELECTION Exchange of Germ Plasm 1963 Selections Nurseries Established in 1963 Seedling Reaction of 1962 Crosses to Downy Mildew (C. E. Horner) Crosses Made in 1963 Golchicine Treated Hops	6 6 8 12 16
EVALUATION Preliminary Quality Evaluation Advanced Field and Quality Evaluation Variety Increase	18 34 34
BREEDING BEHAVIOR, GENETICS, AND BOTANY Cross Incompatability Description of Hop varieties Grown in the United States	35 37
CR e5-2 (OAES Bot:36) HOP DISEASES: THEIR ETIOLOGY, EPIPHYTOLOGY AND CONTROL	
C. E. Horner	
Reaction of Varieties and Breeding Lines to Downy Mildew Verticillium Studies Control of Verticillium Wilt	141 141 143
CR e5-4 (OAES FC:36) IMPROVING YIELD AND QUALITY OF HOPS BY PRODUCTION AND MANAGEMENT PRACTICES	
C. E. Zimmermann	
Investigations relative to Cone Pickability in Hops Effect of Permanent Grass Cover on Fuggle Hops Use of Herbicides on New Hop Plantings Effect of Trellis Height on Performance of Hop Varieties Study of Endogenous Gibberellins in Hop Cones Test of Treated Paper Twine Effect of Hormones on Root Development of Hop Rhizomes	45 51 56 59 60 62

	Page
CR e5-5 (OAES AC:36) CHEMICAL INVESTIGATIONS RELATIVE TO THE EVALUATION OF HOPS	
S. T. Likens	
FACTORS INFLUENCING STORAGEABILITY	69
CHARACTERIZATION OF EXPERIMENTAL HOP LINES BY CHEMICAL ANALYSES	74
ISOLATION OF HOP VOLATILES FROM BREWING PRODUCTS	7 8
INVESTIGATIONS INTO ANALYTICAL METHODS	97
SERVICE WORK FOR COOPERATIVE AGRONOMIC AND BREEDING TRIALS	102
INVESTIGATIONS INTO CAUSES OF CONE BREAKACE (SHATTER)	105
INFLUENCE OF HOPS ON FERMENTATION PRODUCTS	106
QUALITY CHANGES DURING DRYING AND BALING	107
MISCELLANEOUS PRELIMINARY WORK ON HOP EXTRACTS	110
APPENDIX	
A F F E N D I X	
Cultural practices, 1963 Seedlings in 1961 nursery (1960 crosses) at Corvallis to go into	111
1964 nursery at Prosser, Washington 1963 Report on New Hop Varieties at the Irrigation Experiment	174
Station, Prosser, Washington Oil Characteristics of European, Wild American, and hybrid	115
origin hop varieties	117
Downy mildew ratings breeding block, 1963 Downy mildew ratings nurseries, 1963	121 123
Downy mildew ratings observation block, 1963	129
Downy mildew ratings selections, 1963	130
Downy mildew ratings male lines, 1963 Downy mildew ratings Wild Americans, 1963	13 1 132
Observations during machine picking of 6 varieties in height of	عرد
trellis trial, 1963	133
Observations on pickability obtained during machine harvest of	7.01
experimental lines, 1963 Pluckability data	134
Infiltration rates of soil samples — permanent cover trial	139
Bulk density of soil samples - permanent cover trial	1/12
Data from height of trellis experiment	143
Notes on hop rooting experiment Special apparatus and details — hop volatiles from brewing products	149 153

INTRODUCTION

S. N. Brooks

This 1963 annual report of investigations carried out by the regional hop project headquartered at Corvallis, Oregon includes data collected and summarized during the period March 1, 1963 to February 28, 1964. It includes data in some cases which were collected by personnel at the Irrigation Experiment Station at Prosser, Washington. All data are reported under one of four main lines of study or line projects. Detailed discussions and summarizing data are presented for each experiment or phase as a separate section within a line project report. Additional data or notes which are important enough to be included as a matter of permanent record are appended to the report.

Some of the line projects are conducted cooperatively by investigators located at Oregon State University. In these cases, it is necessary that a line project report be prepared by more than one person. Where this has occurred an attempt has been made to give each project leader full credit for his contribution to the report.

The work summarized in this report is supported by public and private funds. Cooperative research is carried out by Crops Research Division, ARS, USDA; Oregon Agricultural Experiment Station; and United States Brewers Foundation through the Agricultural Research Foundation under Memorandum of Understanding. In addition certain phases of the federal breeding program are cooperative with the agricultural experiment stations in California, Idaho and Washington also under Memorandum of Understanding. This report does not summarize work done at any of the institutions which does not involve direct cooperation of federal personnel.

The immediate staff of the hop research project in 1963 consisted of the following persons. This list is made up of regularly employed personnel who were associated with the cooperative State-Federal hop research program and thus contributed directly to the work reported herein. Personnel doing independent research at Oregon State University and field assistants hired for intermittent or seasonal jobs on the cooperative program are not included.

Dr. S. N. Brooks, Research Agronomist, USDA,

Dr. C. E. Horner, Plant Pathologist, USDA and OSU.

Mr. S. T. Likens, Research Agronomist, USDA,

Mr. C. E. Zimmermann, Plant Physiologist, USDA,

Mr. H. L. Dooley, Asst. in Plant Pathology (part time), OSU,

Mrs. J. M. Barnes, Secretary, USDA,

Mr. Bernes Frey, Agric. Aid, USDA,

Miss Gail Nickerson, Research Lab. Tech., OSU,

Mrs. Hulda Bauer, Laborer (part time) OSU,

Mrs. Vie Nemec, Lab. Assistant (part time)OSU,

Mr. Phillip Giffin, Laborer (part time) OSU,

Mr. John Giffin, Laborer (part time) OSU,

Miss Penelope Hawkins, Lab. Technician (part time) OSU,

Miss Carol Minton, Lab. Assistant (part time) OSU.

The hop project was pleased to have Dr. R. A. Neve, hop breeder (now head of department) from Wye College, England, spend 3 months here in the spring and summer of 1963. While he was here, Dr. Neve studied sex chromosome types in our collection of wild American material.

Several papers were published by hop research personnel during the past 12 months, and additional manuscripts were prepared for publication. These are:

Technical:

- Likens, S. T. and G. B. Nickerson. Two point conductometric titration of hop \propto -acids. Wallerstein Lab. Comm. 26(89): 39-46. 1963.
- Horner, C. E. Chemotherapeutic effects of streptomycin on establishment and progression of systemic downy mildew infection in hops. Phytopath. 53: 472-474. 1963.
- Brooks, S. N. and Y. P. Puri. Atmospheric conditions influencing pollen shedding in hops. Crop Sci. 3: 530-531. 1963.
- Brooks, S. N. Relation of training date to pollen shedding in male hops, Humulus lupulus L. Crop Sci. 3: 275-277. 1963.
- Anderson, J. Harland, and S. T. Likens. Observations of the effects of hops on fermentation. MBAA Tech. Quart. 1(1): 10-19. 1964.
- Horner, C. E. History of hop downy mildew control. Mod. Brewery Age 66: 48-50, May, 1964.
- Brooks, S. N. Hop downy mildew -- a look to the future. Mod. Brewery Age 65: 51-52, May, 1964.

Manuscripts prepared:

- Horner, C. E. Hop diseases in Oregon and their control. (to be presented at the International Hop Disease Conference, East Malling, England, and to be published in the proceedings)
- Zimmermann, C. E., S. N. Brooks, and S. T. Likens. Gibberellin A3 induced growth responses of hops. (Humulus lupulus L.) (to be published in Crop Sci.)
- Likens, S. T., and G. B. Nickerson. Detection of certain hop oil constituents in brewing products. (to be published in 1964 Proc. ASBC)
- Brooks, S. N., D. D. Evans, and S. T. Likens. Sprinkler irrigation and fertilizer response of hops. (to be published in Agron. J.)
- Puri, Y. P., and S. N. Brooks. Megasporogenesis and embryo development in the hop. (to be submitted to Crop Sci.)
- Puri, Y. P., and S. N. Brooks. Microsporogenesis and pollen characteristics of the hop. (to be submitted to Crop Sci.)

World production of hops in 1963-64 amounted to about 190,000,000 pounds in the northern hemisphere and 4,000,000 estimated in the southern hemisphere for a total of about 194,000,000 pounds, almost 8% above the previous record of 180,600,000 pounds in 1959-60. Final figures are not yet available since the southern crop does not come off until February or March. Drought, wind, and frost of catastrophic proportions in Tasmania reportedly reduced the Australian crop by 50%. Conditions apparently were good in the other hop producing countries, and fair to good crops were produced. Increased production in almost all of the major producing countries accounted for the increase in 1963-64. Only Jugoslavia appears to have significantly reduced production in 1963-64. However, data for Canada, Hungary, Australia, and New Zealand are not available at this writing.

According to AMS reports, exports of U. S. hops for the period September, 1963 to January, 1964 amounted to 12,605,489 pounds which is about 243,000 pounds more than in the same period last year. Imports during the same period were 4,881,012 pounds this year compared to 3,589,760 pounds last year.

U. S. Breweries used 11,045,261 pounds of hops (September-January) which is up about 190,000 pounds over last year for the same period. In spite of a slowly declining ratio, total hop usage continues to climb because of increased beer production. World production of beer is also increasing.

According to an AMS and OSU crop report (Dec. 23, 1963) the 1963 U. S. hop crop totaled 51,422,000 pounds, 16% above last year, 45% above the short 1961 crop, and 15% above average, (Tables 1 and 2). Only California had a smaller crop than last year, down 3%. Most of the increase was in Washington where production reached a record high of 32,136,000 pounds and accounted for 62% of the U. S. total compared with the average of 58%. The Washington crop was up 27% from last year and was 24% above average, primarily because acreage was the largest on record.

Table 1. Hop acreage and yield per acre, 1962, 1963, and 1957-61.

	Acre	eage harvest	ted	Yield per acre			
State	Average 1957 – 61	1962	1963	Average 1957 - 61	1962	1963	
		- Acres -		3	- Pounds -		
Idaho Washington Oregon California	3,160 16,400 4,460 5,260	3,400 18,000 3,800 4,100	4,000 20,600 4,000 4,100	1,768 1,580 1,278 1,453	1,940 1,410 1,380 1,710	1,770 1,560 1,350 1,660	
United States	29,280	29,300	32 , 700	1 , 530	1,510	1 , 573	

Table 2. Hop production, average prices received, and farm value, 1962, 1963, and 1957-61.

Cl - l -	-	oduction	nggaghershinde if wiQcD	Price pe	er pound	Farm value	
State	Average 1957 - 61	1962	1963	1962	1963	1962	1963
	- 1,000 pounds -				nts =	- 1,000	dollars -
Idaho Washington Oregon California	5,601 25,912 5,614 7,658	6,596 25,380 5,244 7,011	7,080 32,136 5,400 6,806	49•0 141•0 146•0 59•0	53.0 45.5 45.0 58.0	3,232 11,167 2,412 4,136	3,752 14,622 2,430 3,947
United States	816 وبليا	44,237.	51,422	47.4	48.1	20,947	24,751

Idaho also had a record high acreage which, with near average yields, produced that State's largest crop on record, 7,080,000 pounds, 7% above 1962 and 26% above average. California's crop, (6,806,000 pounds) was down from last year because of a smaller yield per acre, although the yield was above average. Acreage was 22% below average, more than offsetting any gain from above average yields.

Hop yards in Oregon produced a total of 5,400,000 pounds in 1963, 3% larger than 1962, but 4% below the 1957-61 average, according to the Oregon Crop and Livestock Reporting Service. Hop growers harvested 200 more acres in 1963, which more than offset the lower average yield per acre to give this year's larger crop. Oregon's 1963 hop production is valued at 2.4 million dollars, about equal to last year.

Throughout most of the producing States, a cool, wet spring was generally unfavorable for vine growth and resulted in mildew infestations in many yards. However, generally good growing weather prevailed during July and August and all areas had good to excellent weather for harvest. Yields of Late Cluster hops were generally disappointing in Washington, although Early Cluster yields were considered good. Early harvested crops in California showed some mildew damage and, because some yards did not mature properly, hops were small, soft, and lightweight. Climatic data for Corvallis, Oregon are given in Table 3.

Table 3. Climatological data taken at Hyslop Agronomy Farm, near Corvallis, Oregon, in 1963 and during previous years.

	Avg. Max	Temp.	Avg.	Min. (OF)	Temp.	. A	vg. Me	an Te	emp.		cipita (inche		
Month 1962	1963	Norm.	1963	1	Norm.	1	963	No	m.	196	3	Norm	•
Oct. Nov. Dec.	61.74 54.40 47.29	64.69 53.13 48.06	43.48 39.33 35.77		43.45 37.51 34.66	140	2.61 6.87 1.53	54, 45, 41,	36	4.62 7.89 2.90	9	3•53 5•44 6•15	
1963 Jan. Feb. Mar. Apr. May June July Aug. Sept.	41.48 56.07 53.77 54.63 66.71 70.37 74.03 78.74 77.4	45.34 50.54 55.34 62.3 2 68.80 73.44 81.31 80.95 76.8	25.68 38.96 35.52 38.90 44.45 48.07 50.03 51.61		32.53 35.07 36.98 40.49 44.95 49.34 51.88 51.41 48.9	44 44 55 66	3.58 7.51 4.65 6.77 5.58 9.54 2.03 5.18	42, 46, 51, 56, 61,	17 41 86 42 66 24	1.61 5.2; 6.30 4.61 3.91 .53 .65	30 + 30 20 20 20 20 20 20 20 20 20 20 20 20 20	6.42 5.10 4.06 2.10 1.85 1.29 .32 .38 1.30	
Yearly total	•									37 . 9l	₄ 1	ı0 . 25	
Yearly mean	63•39	61.39	42.26	5 1	41.91	5	2.80	51.	•73				
	Rel.humid @8AM (%)	(in	•)		ear	pt: clo		No clou	ıdy	ra	o. iny	Avg.veloc	city H
	1963 Norm	• <u>1963</u>	Norm.	1963	Norm	1963	Norm	1963	Norm	1963	Norm	1963	Norm
May 8 June 7 July 8 Aug• 8	9.73 79.9 2.00 77.0 5.41 76.0 0.77 71.2 5.77 76.2	2 4 .312 1 7 5 .200 1 9 6.516 1 0 8.160	4.066 4.664 4.4 34 6.088	1 9 6 11 11 11	9 11 10 18 17 15	11 1) ₄ 13 20 17 13	12 12 11 10 9 10	18 8 11 7 3	989 3 55	27 13 13 10 9 8	14 12 9 3 3 6	2.17 2.40 1.99	2.15 1.62 1.88 2.02 1.72 1.82
Total Mean 8	84.06 77.	5•246	4,295	45 8	30 13	88 15	64 11	50 8	39 7	80 1 3	47 8	2.07	1.87

CRe5-1 (OAES FC:36) BREEDING AND EVALUATING NEW AND IMPROVED VARIETIES OF HOPS

S. N. Brooks

The work done under this line project consists of development of improved varieties of hops, studies of techniques of breeding or evaluating genetic lines, basic studies of inheritance or inherent variation in the plant itself, and studies on the botany of hops. The report is divided into three sections:

- (1) That phase dealing with crossing and initial selection of seedlings,
- (2) Preliminary and advanced evaluation of selections for field performance, and
- (3) That phase of this project dealing with botanical and genetic studies.

BREEDING AND SELECTION

Exchange of Germ Plasm

No introductions were received into the hop breeding program in 1963, and no material was sent to other countries. Current requests from Taiwan for commercial varieties, and from England for Wild American material, will be filled in 1964.

1963 Selections

Five clones in the 1961 nursery at Corvallis were selected for continuation and will be increased for preliminary evaluation. Accession numbers and parentages are given in table l_{\bullet}

Table 1. Selections saved at Corvallis in 1963.

Accession No.	Cross No.	Parentage
C 61001	60069	1/4 Str; 5/64 Fu; 3/64 Bel; 1/32 ea. OR, LG, EG, LC;
C 61002 C 61003 C 61004 C 61005	60070 60028 60033 60058	1/64 KG; 39/64 X 1/8 LG; 1/16 Fu; 13/16 X 1/2 Ha; 3/8 Fu; 1/8 X 3/8 LG; 3/16 Fu; 1/8 EKG; 1/16 Bav; 1/4 X 1/2 WA; 1/2 X

Material sent to Prosser in 1962 was examined by C. E. Nelson. Twelve selections which performed well were fairly early maturing. Since hop growers want to have a range of maturities, and it is difficult to get good, early varieties, these selections were marked for inspection again in 1964. The entire nursery will be kept another year. Performance notes for 1963 are appended to this report.

Nurseries Established in 1963

No material was sent to Prosser, Washington in 1963, because the seedlings had not all produced sufficient rhizome growth for propagation.

Instead an additional year's observations were made on the 1961 nursery material at Corvallis. On the basis of mildew reaction and vigor 130 female clones were selected to be included in the 1964 Prosser nursery. These are listed in the Appendix.

A seedling nursery of 587 clones from 38 crosses made in 1962 was planted under low trellis at a 4° x 8° spacing. The nursery was made up as follows:

Table 2. Planting plan of 1963 seedling nursery. (Rows numbered East from Smith Lane)

Row	Cross number and number of plants in progeny
48	62004 - 52
47	62006 - 52
46	62011 - 52
45	62013 - 52
44	62005 - 48
43	62008 - 30; 62014 - 16; 62009 - 5; 62016 - 1
42	62003 - 28; 62015 - 14; 62012 - 8
41	62001 - 3; 62007 - 5; 62034 - 6; 62035 - 4; 62010 -30
40	62002 - 29; 62017 - 3; 62018 - 3; 62019 - 8; 62021 - 9
39	62020 - 13; 62023 - 3; 62025 - 3; 62027 - 8; 62028 - 15; 62030 - 2;
	62031 - 3; 62032 - 1; 62033 - 1; 62043 - 2
38	62036 - 26; 62040 - 5; 62041 - 1; 62042 - 2; 62029 - 12
37	62037 - 32

Seedling Reaction of 1962 Crosses to Downy Mildew

(C. E. Horner)

Approximately 3000 seedlings representing progenies from 43 crosses were evaluated for resistance to systemic downy mildew crown infection.

Procedure:

Seedling were grown in the greenhouse from February to August. Aerial stems were clipped and the soil pushed away from one side of the upper crown.

Inoculum was obtained by washing downy mildew spores from naturally infected leaves and shoots collected in the field. Inoculum was derived from several lines and varieties to include possible races of the pathogen. Spore suspensions were filtered to remove debris and placed at 20°C. to germinate. When spores were actively germinating, 5 ml of spore suspension was deposited against the exposed crown of each plant by use of an automatic pipette. This method of inoculation had proved to be more rapid and to result in fewer escapes than previous methods (1962 report p. 10.)

Twelve weeks after inoculation all plants were dug, washed and individually checked for systemic crown infection.

Results:

Seedlings were derived from 5 groups of crosses: (1) backcrosses of Late Cluster, Early Cluster, Brewers Gold, Hallertau, and Backa with mildew resistant males, (2) Fuggle x Wild American males, (3) Wild American x Wild American males and females from 4 states, (4) 107-I, 135-I (mildew resistant) and Bullion x high alpha acid males, and (5) Pollen storage tests.

Backcrosses

A total of 981 seedlings from 16 crosses was available for analysis. Table 1 shows the downy mildew reaction of progenies from backcrosses of Early Cluster, Late Cluster, Brewers Gold, Backa, and Hallertau with resistant males.

Table 1. Backcrosses, 1963

Cross Number and Female Parer		No. of Plants Tested	No. Resistant	No. Susceptible	% Resistant	No. Kep t
Late Cluster	1 2 3	3 58 山山	3 29 28	0 29 16	100.0 50.0 63.6	3 29 28
Total		105	60	45	57.1	60
Brewers Gold Total	4 5 7	287 99 82 6 474	217 48 59 4 32 8	70 51 23 2 146.	75.6 48.5 71.9 66.7 69.2	57 48 54 5 164

Table 1. Backcrosses, 1963 (cont.)

Cross Numb and Female Par		No. of Plants Tested	No. Resistant	No∙ Susceptible	% Resistant	No. Kept
Hallertau	8 9 10	66 7 69	37 5 50	29 2 19	56.1 71.4 72.5	30 5 30
Total		1/12	92	50.	64.8	65
Backa	11 12 13 14	92 11 116 19	72 8 80 16	20 3 36 3	78•3 72•7 69•0 84•2	52 8 54 1 6
Total		238	176	62	74.0	130
Early Cluster	15 16	21 1	7) [†]	7 0	66.7 100.0	1);
Total		22	15	7.	68.2	15
Grand Total		981	671	310	68.4	14314

Fuggle x Wild American

These crosses yielded 808 seedlings for analysis, a high percentage of which were resistant as shown in Table 2.

Table 2. Fuggle x Wild American, 1963.

Cross Number	No. of Plants Tested	No. Resistant	No. Susceptible	% Resistant	No. Kept
19 20 21 22 23 24 25	159 338 208 37 38 2 26	152 309 170 29 29 0	7 29 38 8 9 2	95.6 91.4 81.7 78.4 76.3 0.0 88.5	8 13 9 0 3 0 3
Total	808	712	96	88.1	36

Wild American x Wild American

Eleven crosses yielded 812 seedlings for analysis. Table 3 shows that the crosses varied considerably in the percentage of resistant seedlings.

Table 3. Wild American x Wild American, 1963

Cross Number	No. of Plants Tested	No. Resistant	No. Susceptib	<u>Le</u>	% Resistant	No. Kept
17 18 26 27 28 29 30 31 32 33	38 219 19 194 84 156 12 67 3 10	22 178 10 138 41 88 10 58 2	16 41 9 56 43 68 2 9 1 4		57.9 81.3 52.6 71.1 48.8 56.4 83.3 86.6 66.7 90.0 60.0	3 0 8 15 12 2 3 1 6
Total	812	562	250		69•2	54

High Alpha Acid Crosses

Only 96 seedlings from 3 of the 5 crosses were successfully grown. Table 4 shows that a high percentage of these were resistant.

Table 4. High Alpha Acid Crosses, 1963

	No. of				
Cross Number	Plants Tested	No. Resistant	No. Susceptible	% Resistant	No. Kept
35 36 37	4 40 52	14 26 141	11 0	100.0 65.0 78.8	4 26 3 2
Total	96	71	25	74.0	62

Pollen Test Crosses

Four crosses using stored pollen yielded 122 seedlings for downy mildew testing.

Total	122	93	29	76.2	10
40 41 42 43	96 5 4 17	71 5 4 13	25 0 0 1	74.0 100.0 100.0 76.5	5 1 2 2
Table 5. Cross Number	No. of Plants Tested	No. Resistant	No. Susceptible	% Resistant	No. <u>Kep</u> t

Discussion and Conclusions:

Nearly every year improvements have been made in the procedures used for testing mildew reaction of seedlings. Minor refinements of the currently used procedures will allow us to test large numbers of plants. The data from the 1963 tests lead me to believe that many plants escaped infection since the proportion of resistant plants is unusually high. I believe this problem can be overcome in future tests by providing environmental conditions more favorable for infection during the first 3-4 days after inoculation than existed in the tests reported above.

Crosses made in 1963

Seeds from 24 crosses and open-pollinated sources were collected at Corvallis in 1963. In addition, open-pollinated seeds from two of Prof. Zattler's (Hüll) downy mildew resistant clones were received from Dr. R. A. Neve of Wye College, England.

The seed lots were treated similarly to last year with an additional spraying of Captan formulation to reduce growth of micro-organisms. Following 6 weeks at $38^{\circ}F_{\bullet}$ they were pre-germinated for 2μ hours and planted in flats in the greenhouse.

The soil mixture used for the 1963 crosses was somewhat different than in past years in that it was made up of used mushroom-growing medium at a ratio of 1:11in addition to about 1,000 lb./a of 13-13-13 and 1.5 T/a. lime added to the topsoil. Watering is to be by sub-irrigation to reduce seedling casualties.

Grosses in 1963 were as follows:

A. Back-crossing program (BC):

Females	Characters to be improved
Late Cluster	Downy mildew resistance
Early Cluster	Downy mildew resistance
Brewers Gold	Downy mildew resistance
Hallertau	Downy mildew resistance and vigor
Backa	Downy mildew resistance and vigor

Males Reasons used as parents

526-4 or 524-2 Wild Americans with good vigor

123-S Very vigorous and resistant to downy mildew 421-1, 2 Very vigorous and resistant to downy mildew 121-2 Very vigorous and resistant to downy mildew

Remarks:

- l. Downy mildew resistant male seedlings will be grown and crossed back to parental varieties for several (2-5) generations.
- 2. Purpose is to duplicate quality of varieties acceptable to brewing industry in varieties improved in downy mildew resistance and, in case of Hallertau and Backa, in vigor.

135-I (1123 DN) x 119-1, 2 (Highly resistant) (18% \propto)

Remarks:

1. Additional crosses in this series will be made in 1964 using 135-I and 107-I (highly resistant), and Bullion (resistant) with 119-1, 2 and 120-1, 2,

both high ~-acid males.

2. Selection will be made for downy mildew resistance and high \propto -acid content, singly and in combination.

C. Reconstruction of 128-I (≪):

Bullion (1023 DN) x 219-4

1. Pedigree of 128-I is 1/2 Bullion, 1/4 Samling, 1/4 Unknown. Male parent of 128-I is gone. Pedigree of 219-4 is 1/4 Brewers Gold, 1/4 Samling, plus 1/2 other germ plasm.

2. Additional crosses will be made in 1964 using 123-S (a male which is 1/2 Bullion) on 61-S, 62-S, and 64-S (all females which are 1/2 Samling).

D. Breeding for yield (SY):

remales 103-I (10-S) Fuggle Hallertau	Medium maturity, very good vigor, downy mildew resistant Early maturity, medium vigor, downy mildew resistant Medium maturity, poor vigor, downy mildew susceptible
Males 106-S 110-S 119-1, 2	Characters Very early maturity, poor vigor, medium ~-acid Medium maturity, medium vigor, medium ~-acid Very late maturity, very good vigor, high ~-acid.

Remarks:

- 1. Yield and vigor will be tested at different fertility levels to elucidate growth efficiency and interaction with environment.
- 2. Data will be obtained also on maturity, <-acid, and downy mildew reaction.
 3. Selection will be made for downy mildew resistance, and particular
- 3. Selection will be made for downy mildew resistance, and particular attention will be paid to early maturity. Seedlings will be screened and selected according to usual procedures.

Crosses for 1963

		Crosses for 1963
Cross 1	No.	Parentage
63001.	BC	122 - I 19208 x 121-2 C 19062 M
63002	BC	122 - I 19208 x 421-1, 2 C 19040 M
63003	BC	122 - I 19208 x 524-2 I 58006 M
63004	SY	222 - I 19209 x 106-S C 19170 M
63005	SY	222 - I 19209 x 110-S C 19173 M
63006	SY	222 - I 19209 x 119-1, 2 C 19058 M
63007	BC_2	311 - I 19001 x 5-29-4 I 19001 x C 19062 M
63008	BC	311 - I 19001 x 123-S C 19182 M
63009	SY	322 - I 56001 x 106-S C 19170 M
63010	SY	322 - I 56001 x 110-S C 19173 M
63011	SY	322 - I 56001 x 119-1, 2 C 19058 M
63012	BC	322 - I 56001 x 526-4 I 58015 M
63013	BC	422 - I 56002 x 123-S C 19182 M
63011	BC	422 - I 56002 x 121-2 C 19062 M
63015	BC	422 - I 56002 x 421-1, 2 C 19040 M
63016	BC	522 - I 59001 x 121-2 C 19062 M
63017	BC	522 - I 59001 x 123-S C 19182 M
63018	BC	522 - I 59001 x 421-1, 2 C 19040 M
63019	\propto	1023 - DN I 55081 x 219-4 C 51061 M
63020	$R\alpha$	1123 - DN C 19151 x 119-1, 2 C 19058 M
63021	SY	10-S C 19105 x 119-1, 2 C 19058 M
63022	SY	10-S C 19105 x 110-S C 19173 M
63023	SY	10-S C 19105 x 106-S C 19170 M
63024	ZN	7 K 491 x O.P. (Zattler material from Wye)
63025	ZN	2 L 118 x O.P. (Zattler material from Wye)
63026	LC	I 19208 x 0.P.

_		Germ.				_	_		
Cross	6 wk.	date	Plant	No	Emerg @	%	T) 7	No.	
No.	germ.	wks.	date	planted	10 days	Emerg.	Repl.	albino	Gen. remarks
63001	••	8 ?	3-18	300	48	16	•		20% dbl heads, 5% w/o epicotyl
2	•	9 ?	3-19	77		5	COR		*
3	-	9 ?	3-19	194	4 5	3 65 58	63		(Cross 1,2 & 3 should not have been
4	+	6 ,	3-5-64	600	392	65	+		(planted till later.
4 5 6	+	6	11	600	349	58	625		25% w/light yellow leaves.
	+	6	ĬĮ.	600	326	54 46	+		
7 8	+	6	ŭ	540	251	46	ca ·		5% w/narrow leaf.
	+	6	11	180	124	69	-		2% w/narrow leaf & yellow.
9	+	6	11	600	354	59	+		10% dormant? w/crowns.
10	+	6	ŭ	600	410	68	=		
11	-	7	3-10	600	293	49	-}-	69	dd /
12	+	6	3-10	60	36	60	-		5% w/o epicotyl, 2% yellow leaf
13 14 15 16	***	7	3-11	229	126	55	63	13	20% w/dry leaves, DO?
77	-	8	3-13	600	491	82	em		. 7
15	***	7	3-11	600	497	83	+		201 / 31-7 1 23-
16	- ?	7	3-11	600	204	34 1 6	4		3% w/dbl heads.
17	- ,	9	3-18	360	56		93		2% w/long narrow leaves.
18	-	9	3-18	384	84	22			poor germination
19	+	6	3-10	600	395	66	+		2% narrow leaf & yellow.
20	***	8	3-13	600	342	57 50	+		1% narrow leaf, DO serious?
21	-	8	3-13	5 3 8	269	50	••• •	٦)	2% narrow leaf w/dbl head.
22	+	6	3-11	600	323	54	+(al	- 1)	5% yellow narrow leaf.
23	+	6	3-11	600	384	64	+	12	*
24	+	6	3-11	600	378	63 68	+	32	
25	+	6	3-11	600	409	52	+	34	25% w/white blotched leaves, 2% top
26	+	6	3-10	4500	2346	24	+		burn, 1% yellow narrow leaf.
C - •	7								< 1% w/o epicotyl < 1% w/dbl head.
501	1 mix		_						The sale obtained to

Seeds planted 1/2 to 3/4 in. deep.

Flats drenched with 1000 ppm Captan on March 17, 1964 and immediately after planting on 3/18 & 19.

⁸ parts by vol fsl.
2 " " " peat
1 " " mushr " peat

[&]quot; mushroom OM.

²⁵ g 13-13-13 fert 60 g hyd. lime(to pH 6.3)

Colchicine Treated Hops

Objectives:

To develop 4-n Fuggle hops which can be crossed with several male plants to obtain 3-n Fuggle-like genotypes.

Methods:

Water solutions of either 0.6% or 0.75% colchicine were painted on terminal buds of potted Fuggle plants for 3 or 4 days in June, 1963. In subsequent weeks Miss Penny Hawkins examined the laterals from these buds according to the following techniques:

The leaves taken for examination should be between 2-3 mm. They are very close to the growing point and are carefully removed with tweezers, having parted the protecting bracts. These leaves are immersed in a saturated solution of p-dichlorobenzene in a labelled tube for not less than 1 and not more than 2 hours. This is a prefixative which shortens the chromosomes. It is very important to label the lateral from which the leaves have come, and have the leaves labelled with the same code. The leaves are fixed in 1:3 acetic alcohol; the prefixative is pipetted out of the tube and acetic alcohol put in its place. The leaves should be fixed for at least 12 hours. This will keep them for some time.

The leaves are removed from the fixative and dried on a filter paper. The leaves are then put in 2 or 3 drops of acetic-orcein, N hydrochloric acid in a cavity slide. After the leaves have been put in, the slide is gently warmed until the stain begins to retract at the edges, and then left for about 10 minutes.

A small piece of leaf is put in a drop of acetic orcein on a plain slide, covered with a cover glass (No.1, 22 mm sq), and treated as follows:
Warm:

Blot gently:

Run in a very little more stain and warm again gently;

Place on a flat surface and spread the cells by tapping the cover glass with a needle using short vertical strokes (while doing this hold the cover glass in place with finger tips on one end);

Run in more stain if necessary, heat, and place between several sheets of blotting or filter paper (apply vertical pressure with the thumb directly above the squash area to flatten the cells);

Hold the slide over the spirit flame as long as you dare, making sure the preparation does not boil.

Acetic-orcein is used as 1% solution in 45% acetic acid. Because of deterioration in dilute acid, it is kept in a stock solution of 2.2% in glacial acetic acid. This is made up by dissolving 2.2 gms orcein in 100 c.c of glacial acetic acid, with gentle boiling. Then cool and dilute by adding 45 cc of this solution to 55 cc of distilled water. Filter if necessary (or just let it settle.)

10:1 acetic-orcein, N hydrochloric acid is made by adding one part of N. HCl to ten parts of 1% orcein in 45% acetic acid.

Brief results:

- Plant A. Treatment of 0.6% three times a day for 4 days, June 4-7: Material examined on July 15. No 4-n tissue on the lateral examined.
- Plant B. Treatment of 0,75% for 3 days, June 4-6, three times a day: First lateral examined, one 4-n cell found.
- Plant C. Treatment of 0.75%, 3 times a day for 3 days, July 4-6: First two laterals were examined and a mixture of 2-n and 4-n tissue found on both, One lateral numbered Cl. was struck on July 17.
- Plant D. Treatment of 0.60%, 3 times a day for 3 days, June 11-11. Two laterals from the same node examined on July 22. One lateral, DI contained some tetraploid tissue. None was found in D2.
- Plant E. Treatment of 0.60% on June 5-7 (4 times): Tetraploid tissue found in the lateral E.l.

Examination of a 2nd lateral in Al. resulted in no tetraploid tissue found.

Summary:

About 40 buds of potted Fuggle plants were treated with colchicine in June for the purpose of inducing tetraploidy. Treatments consisted of painting—on either a 0.60% or a 0.75% concentration 3 times a day for 3 or 4 days. Thirty buds survived and were examined for ploidy in subsequent weeks.

Some success was attained in inducing the formation of \(\lambda \) cells, but many of the buds (or propagules from them) have been sorted out because examination showed that they were not chimeras. Those that have shown mixtures of \(\lambda \) and 2n tissue are being continued with the hope of concentrating the \(\lambda \) n tissue. The ultimate success of this phase of the program depends upon getting at least one propagule with a sufficiently high degree of tetraploidy that the germ line is involved. It will then be crossed with a 2n male to produce a 3n Fuggle-like variety.

EVALUATION

Objectives:

- L. To provide preliminary quality evaluation of new selections and make observations on vigor and disease reaction.
- 2. To make preliminary field evaluation of new selections in replicated variety trials.
- 3. To provide advanced field and quality evaluation of experimental varieties.
- 4. To increase planting stock of promising experimental varieties for ultimate distribution.

Results:

Preliminary Quality Evaluation

Twenty-one samples of experimental lines were submitted for brewer evaluation in 1963. Four of these were furnished by C. B. Skotland. All had 4.5% alpha-acid except 2 which had produced more alpha-acid in previous years and were included. An additional 2 samples were submitted only to R. G. Wright because of limited amounts of hops.

The samples were all dried at 140° F, and approximately 0.5 pounds of 50_2 per 100 pounds of fresh hops were introduced into the drying air. Drying times for the several lots ranged from 5.5 to 9 hours.

Quality data supplied by S. T. Likens are included in table 1, followed by chromatographs of the oil samples. The column used for the oil separations was $1/8^{\circ}$ x 25° aluminum with 2% butanediolsuccinate on chromosorb.

Results of USBA physical evaluation are given in tables. 2, 3, 4, and 5.

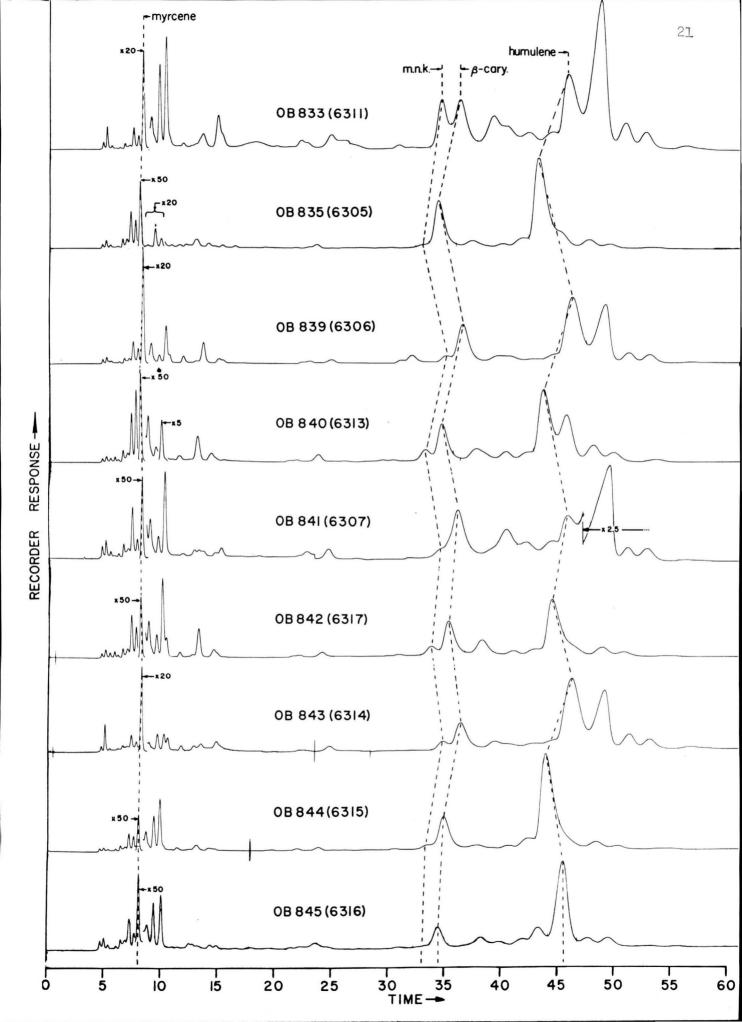
Discussion:

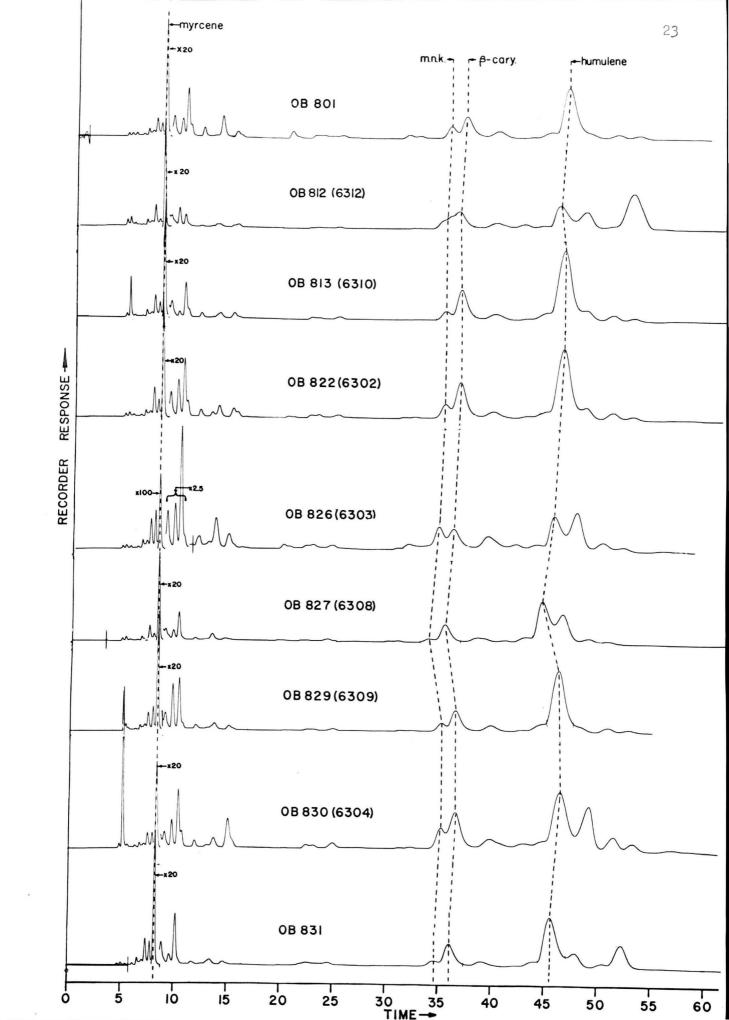
Samples submitted to USBA this year were objectionable in several respects. We experienced some difficulty in electrical power during drying this year which undoubtedly accounts for part of the problem. In addition there were comments regarding immaturity in some cases. Because of the poor appearance of the 1963 samples, the project has discussed ways of improving bale samples in future years. Following is a list of suggestions made by S. T. Likens:

- 1. Our primary problem is one of production, that is, in order to put up a satisfactory sample, it should be at least 1/2 lb. which would require at least 20 lb. green hops. I would not presume to question how this should be accomplished, however I feel we should explore every possibility.
- 2. The second problem, as I see it, is to better gauge the maturity of each genotype. Immediately, we should be able to improve this aspect by more frequent observations and/or more detailed notes. In the longer run, I think

it may be possible to develop a miniature chemical test, at least for <-acid.</pre>
I will look into this.

- 3. The third operation of consequence in preparing satisfactory samples is picking. We would obviously improve sample appearance by hand picking but would lose the pickability data. I feel the pickability information is necessary and would suggest we continue use of the machine.
- Drying is probably the most difficult problem we face, considering the necessity of handling several genotypes simultaneously when their drying characteristics may be quite different. I think we can make several changes to improve the ease and reliability of this operation. Let's consider the following procedure:
- a. Pick up to 4 genotypes in the A.M. and move them immediately to the dryer to prevent the possibility of sack burn.
- b. Build 8 ea., 4 x 6 x 1.2 trays with screen bottoms and load 1 genotype per tray.
- c. The sulfuring operation has been worked out by Dr. Brooks and me, but we still need to buy a flow meter gauge. I will take care of this.
- d. Use reversed air flow in order to prevent cones from bouncing if the air flow is too high.
- e. Dry at 130° straight through. I think this is best for oil preservation (aroma).
- f. Remove the trays as the individual genotype is dry.
- 5. Thin layers exposed to atmosphere on both top and bottom, such as we would have in the trays, should allow adequate moisture distribution by the third day (36-48 hours).
- 6. Since the committee is most accustomed to normal bale-density and since lupulin damage is least, we should bale at 11-13 lb./cu.ft. After 3-7 days the top board on the bales should be cut with a band-saw and the bale sliced with a knife. The 1/2 lb. bales should be trimmed, wrapped and labeled as usual.
- 7. While awaiting shipment, all samples should be kept at -5°C.
- 8_{ullet} Shipment to USBA committee members should be air express to insure that some samples do not lie around in hot mail rooms.


This may be considered as biasing judgement by processing in a manner which may not be commercially practical. However, this should produce samples indicating the potential of the genotype, after which the processing requirements could be determined. The additional effort such a processing program would require seems small in proportion to the advantages.


Sample	Code No.	Moisture	Oil content	% «	% B	Harvest date	Pickability
OB 822 OB 826 OB 829 OB 813 OB 833 1114-I OB 827 OB 835 OB 840 OB 8141 OB 8145 OB 830 OB 839 OB 841 OB 843 128-I L-1 L-8 E-Z E-21 OB 8013 OB 8313	6302 6303 6309 6310 6311 6319 6308 6305 6315 6316 6304 6306 6307 63114 6320 6321 6322 6328	8.85 9.10 8.40 9.65 8.25 11.50 9.65 8.60 9.75 10.50 10.00 9.65 9.25 9.40 8.95 10.85 7.85 7.85 6.85 9.45 10.35	1.19 2.44 0.98 1.82 0.44 1.21 1.18 0.88 1.45 0.75 1.04 0.61 0.72 0.93 0.84 1.16 2.53 0.81 0.75 0.98 0.97	6.71 10.43 4.72 8.99 4.86 4.83 8.16 7.11 5.68 4.67 6.30 4.95 7.08 3.67 7.58 13.45 8.90 9.70 9.18 9.19 10.27 8.03	6.15 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.30 6.31 6.32	9/13 9/13 9/13 8/30 9/17 9/17 9/17 9/19 9/17 9/14 9/14 9/14	Poor pickability Good pickability Poor pickability Good pickability Average pickability Good pickability Poor pickability Very good pickability Very poor pickability Poor pickability Poor pickability Average to poor pickability Average to poor pickability Average to poor pickability Average pickability Average pickability Pickability unknown Very good pickability From CBS, Prosser, Washington Insufficient sample for USBA, poor pickability Insufficient sample for USBA, very good pickability

^{1/} In yield trial; 4.9 in 1961, 6.4 in 1962.

^{2/} In yield trial; 5.5 in 1962.

^{3/} Sent to RGW only.

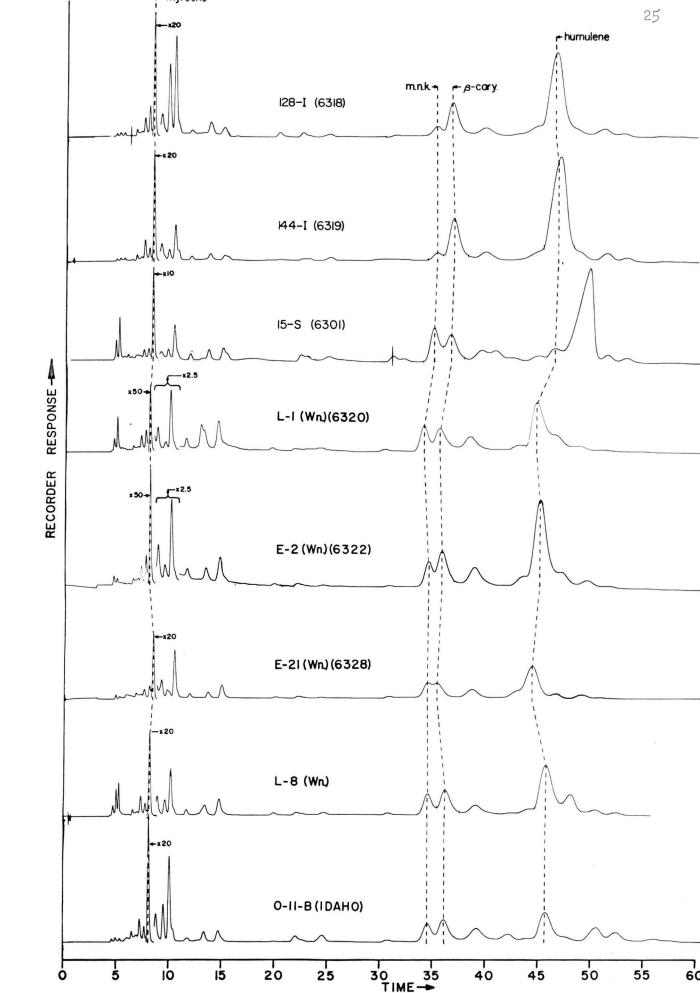


Table 2. Hand evaluation by USBA of 1963 hop samples for each criterion.

an0an(6a00)	Olympia	F & M Schaefer	Anheuser-Busch	Schwarz Labs.	Canadian Breweries	Falstaff	FVK P. Ballantine	& Sons	Remarks
OB827(6308) Appearance Cone size Lupulin Aroma Desirability OB835(6305)	3.5 3 7 9 29.5	14 14 10 114 10 12	4 3.5 6.5 7 9 30	4•3 14 12 15 12 17•3	4 2 10 16 12 141	4 14 12 12•5 41•5	3 2 8 11 8 32	3 12 13 10	
Appearance Cone size Lapulin Aroma Desirability	2 3 9 11.5 11 39.5	3 7 12 8 33	3 7.5 7 9 29.5	3•7 14 12 18 13•5 51•2	2 9 12 7 32	3.5 4 11.5 13 8.5 40.5	1 2 12 15 11	2 3 5 13 7•5 30•5	
OB840(6313) Appearance Cone size Lupulin Aroma Desirability	2 3 8 5 4 5 22 5	3 7 15 <u>12</u> 39	2.55 7.58 25	3.7 4 9 12 10.5 39.2	2 3 8 12 6 31	3 8.5 11 7 32.5	2 8 12 8 32	1 2 10 0 14	
OB842(6317) Appearance Cone size Lupulin Aroma Desirability	2,5 3 6,5 7,5 6,5	2 3 10 5 5 (25)	1.5 4 6.5 8 5.5 25.5	3.3 4 7.5 10 4.5 29.3	1 2 5 6 5 19	2.5 3 10 11 7 33.5	1 7 8 6 23	0 1 6 0 0 (7)	
OB844(6315) Appearance Cone size Lupulin Aroma Desirability	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 14 10 12 9 38	4.5 3.5 9.5 11.5 6.5 35.5	3•7 5 10•5 20 15 54•2	3 2 9 6 6 26	4 3 10.5 12.5 7.5 37.5	14 2 7 10 8 31	Too green to evaluate	Electrical failure during drying
OB845(6316) Appearance Cone size Lupulin Aroma Desirability () on total	2 2.5 5 2.5 2.5 (14.5) score	2 2 5 0 0 0 reflects	2.5 3 6.5 7.5 4.5 24 dispa	3 5 7•5 5 1•5 22 raging	2 2 5 8 <u>5</u> 22 remarks	1.5 2 7 9.5 5.5 25.5 such as	2 3 6 8 7 26 "not	1 3 0 4 0 8 commer	Electrical failure during drying

⁽⁾ on total score reflects disparaging remarks such as "not commercial", "unsatisfactory", etc. poor kilning, spoiled sample. Pexcessive seeds

Hand evaluation by USBA of 1963 hop samples for each criterion - cont.

	Olympia	F & M Schaefer	Anheuser Busch	Schwarz Labs.	Canadian Breweries	Falstaff	FVK P.Ballantine	& Sons FEC	Remarks
OB822(6302) Appearance Cone size Lupulin Aroma Desirability	3 3 11.5 14.5 11.4 43	3 14 12 5 6 30	3 2 12 8 6 31	3•7 3 12 5 7•5 31•2	1 2 10 6 7 26	3 3•5 12 12 2 7•5 38 ©	3 3 12 15 12 45	2.5 3 10 1 0	
OB826(6303) Appearance Cone size Lupulin Aroma Desirability	2 3 13•5 7 6 31•5	3 14 17 12 19	2 2.5 13.5 9.5 7	4 14 15 15 12 50	1 2 12 7 10 32	3 3.5 14.5 17 13.5 51.5	1 2 15 18 14 50	3 12 15 11	
OB829(6309) Appearance Cone size Lupulin Aroma Desirability	2 2 6 10.5 8	3 14 12 16 12 17	3.5 3.5 9 13.5 11.5	3.7 3 9 10 7.5 33.2	2 2 8 8 8 8	3.5 3 11.5 13.5 5.5	2 12 16 13	3 2 5•5 9 6•5	
OB813(6310) Appearance Cone size Lupulin Aroma Desirability	3•5 3 11 3•5 4 (25)	4 3 12 12 12 9	4 3•5 13 13•5 11•5 45•5	4.3 3 13.5 15 12 47.8	2 2 9 5 4 22	4 3.5 12.5 15.5 11 46.5	3 11 ₄ 16 13 49	3 10 10 10 7•5 33•5	
OB833(6311) Appearance Cone size Lupulin Aroma Desirability	3 5.5 4.5 4.5 (21)	2 4 8 8 6 28	3 3.5 10.5 13.5 9.5	4 5 9 12 10•5	3 7 11 10 34	1.5 2.5 10 9.5 5.5	1 8 7 5 23	1.5 1 3.5 3 5	
Appearance Cone size Lupulin Aroma Desirability	4 7.5 5.5 26 ②	14 10 14 5 27	4.5 4 11.5 11.5 9	4.7 5 9 10 7.5 36.2	3 2 8 2 3 18	4.5 2 10.5 7.5 5 29.5	4 7 7 5 25	4.5 3 3.5 3 198	

@ apparently slack-dried.

(3) immature

⁹ excessive seed

Hand evaluation by USBA of 1963 hop samples for each criterion - cont.

	Olympia	F & M Schaefer	Anheuser Busch	Schwarz Labs.	Canadian Breweries	Falstaff	FVK P. Ballantine	K Sons	Remarks
OB830(6304) Appearance Cone size Lupulin Aroma Desirability	2.25 2.5 10.5 14.5 11.5 11.5	14 10 11, 12 14	1.5 3.5 8.5 5.5 5.5	3 12 15 10•5 43•5	1 2 9 6 4 22	3.5 2.5 8 9.5 4.5 28	4 7 12 10 38	3 11 15 15 19	Electrical failure during drying
OB839(6306) Appearance Cone size Lupulin Aroma Desirability	3 2.5 9 10.5 8.5 33.5	2 3 8 12 8 33	2.5 3 11 11.5 8.5 36.5	3 14 12 20 13.5 52.5	3 4 6 13 5 31	3 4.5 10 12 0	4 5 9 8 7 33	5 15 16•5 15 56•5	Electrical failure during drying
OB841(6307) Appearance Cone size Lupulin Aroma Desirability OB843(6314)	2.5 3 9 3.5 5 23	14 10 10 10 10 38	3.5 3 13.5 10.5 7.5	3.7 3 15 10 1.5 33.2	2 3 7 9 5 26	14 12 15 0 35	3 5 10 5 6 (29)	4.5 10 5 9	failure during drying
Appearance Cone size Lupulin Aroma Desirability 128-I(6318)	2 2.5 9 8.5 8 30	3 10 13 10 40	3 10 15 8•5 40•5	3•3 14 15 18 12 52•3	2 3 9 11 7 32	2.5 2.5 10 13 6.5 34.5	14 9 7 6 30	3•5 2 6 6•5 <u>6</u>	
Appearance Cone size Lupulin Aroma Desirability L-1(6320)	3.5 4 10.5 4 5 (27)	3 12 17 12 19	4.5 10.5 13.5 7.5	4.7 3 15 15 7.5 45.2	2 2 14 7 4 29	2.5 5 13 18.5 13.5 52.5	3 2 7 8 7 27	5 2 5 5 0 17	
Appearance Cone size Lupulin Aroma Desirability ② apparently	3 2.5 11.5 11. 11. 12.3 slack-d	2 3 8 10 6 (29)	2.5 2.5 9.5 14 9 37.5	4 15 20 13.5 56.5	1 12 14 8 36	3.5 3 11.5 14 11 13	2 2 10 7 6 27	3 5 15 11 37	

@ apparently slack-dried

@ excessive seed

³ too much shatter

Hand evaluation by USBA of 1963 hop samples for each criterion - cont.

	Olympia F & M Schaefer	Anheuser Busch	Schwarz Labs.	Canadian Breweries	Falstaff	FVK P_Ballantine	& Sons	Remarks
L-8(6321) Appearance Cone size Lupulin Aroma Desirability	3 4 3 4 11.5 10 14 13 10.5 11 42 42	3•5 4 13 14 8•5 43	4•3 5 15 20 15 59•3	3 14 13 12 9	3.5 5 12.5 16.5 11 48.5	3 2 10 12 8 35	3 2.5 9 13.5 11 33	
E=2(6322) Appearance Cone size Lupulin Aroma Desirability	1.25 3 2.5 2 9 12 4.5 0 4.5 0 21.75 (17)	1.5 4 8 11 8 32.5	3.3 5 13.5 5 1.5 28.3	1 2 12 12 7 34	2 3 11 13.5 8 37.5	3 4 8 10 7 32	2 2 11 15 11	
E=21(6328) Appearance Cone size Lupulin Aroma Desirability	2.5 4 2.5 3 10.5 8 10 16 7.5 13 33 © 14	2 3 13 14 9	4 5 15 18 13.5 55.5	0 1 12 5 4 22	2 2 11.5 14 9 38.53	3 2 10 12 10 37	not rated, baby 日日日日	
OBSOL Appearance Cone size Lupulin Aroma Desirability						5 12 5 6 (33)	3 14 10 9 10 36 ©	Electrical failure during drying
OB831 Appearance Cone size Lupulin Aroma Desirability						5 10 10 9 39	3 10 15 12	Electrical failure during drying

³ too much shatter
4 evidence of mold and spider
5 shattered and not well dried
6 not well dried

Table 3.

1963 USBA evaluation of hop samples

	Olympia	Schaefer	Anheuser Busch	Schwarz	Canadian Breweries	Falstaff		Ballantine FEC	Average
OB827 OB835 OB840 OB844 OB845 OB822 OB826 OB829 OB813 OB833 144-I *OB830 *OB839 *OB841 OB843 128-I L-1 L-8 E-2 E-21	29.5 39.5 22.5 26 24 (14.5) 43 31.5 28.5 (25) (21) 26 41.25 33.5 23 30 (27) 42 42 21.75 33	42 33 39 (25) 38 9 30 49 47 40 28 27 44 33 38 40 49 (29) 42 (17)	30 29 25 35 35 31 31 45 5 40 5 24 38 40 5 40 37 5 40 37 5 40 37 5 40 37 5 40 37 5 40 5 40 5 40 5 40 5 40 5 40 5 40 5 5 40 5 5 40 5 40 5 40 5 5 40 5 40 5 5 40 5 5 40 5 5 40 5 5 40 5 5 5 40 5 5 5 5	47.3 51.2 39.3 51.2 39.3 54.2 31.2 31.2 31.3 47.8 40.5 33.2 53.2 54.5 33.2 55.3 55.3 55.3 55.3 55.3	144 32 31 19 26 22 28 22 34 18 22 31 26 32 29 36 31 29	41.5 40.5 40.5 33.5 37.5 37.5 38.5 46.0 49.0 49.0 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5	32 41 32 33 31 26 45 45 23 38 39 30 27 37 37	41 30.5 14 7 8 16.5 144 26 33.5 13 19 49 56.5 32.5 24 17 37 33 41	38.4 37.2 29.4 23.5 35.2 (7 only) 18.9 32.6 42.8 35.7 28.6 27.6 36.2 38.2 31.8 35.4 35.8 35.4 35.8 35.4 35.8 36.2 31.8 35.4 35.8 36.2 31.8 35.4 35.8 36.7 27.6 37.6 38.7 28.6 27.6 38.7 28.6 27.6 38.7 28.6 27.6 38.7 28.6 27.6 38.7 28.6 27.6 38.7 28.6 27.6 36.2 31.8 35.7 38.7 38.7 28.6 27.6 36.2 31.8 35.8 35.8 35.8 35.8 35.8 35.8 36.9 36.9 36.9 36.9 36.9 37.0 38.7 38.8 35.8 36.9 36.

^{*} Poor drying because of electrical failure.
() Off aroma, not commercial, or other remarks regarding quality

Harvest date	Olympia	Schaefer	Anheuser Busch	Schwarz	Canadian Breweries	Falstaff		Ballantine FEC	Average
		· Para	3-4	2 - 2	7.8 2 2			Constitution of the Consti	
8/30 OB827 9/17 OB835 9/17 OB840 9/23 OB842 9/4 OB8444 9/9 OB845 9/13 OB822 9/13 OB822 9/13 OB826 9/13 OB829 8/30 OB813 9/17 OB833 9/17 OB833 9/17 OB839 9/9 OB830 9/9 OB841 9/9 OB841 9/17 OB843 9/17 OB8443	10 5* 18 13 16 21 1* 8 11 15 20 14 6 17 9 12 2* 3* 19 7	6 13 10 19 11 21 15 1* 8 17 18 14 12 9 2* 16 7 20 5*	16 17 19 18 12 20 15 13 3* 1* 7 5* 21 11 9 6 8 10 2* 14 4*	10 7 11 ₄ 19 1 ₄ * 21 18 8 16 9 13 15 12 17 6 11 2* 20 3*	1* 6 9 20 13 16 14 7 12 17 14* 21 18 10 15 8 11 3* 2* 19	6 7 16 15 11 21 9 2* 12 4* 19 18 20 17 13 14 5* 3* 10 8	10 5* 11 20 13 18 3* 1* 2* 21 19 6 9 14 16 7 8 12 7	14* 10 16 19 18 15 3* 11 7 17 13 2* 1* 9 12 14 6 8 5*	6 8 17 20 13 baby 21 14 2* 11 3* 18 19 immatus 9 7 15 12 10 5* 1* 16 4* baby

^{*} First 5

Table 5. USBA physical evaluation (rank) for past 3 years of samples examined in 1963.

Selection	1961	1962	1963	Disposition
OB827	17		6	To be discarded
OB835	14	7 07	8	To be yield tested
OB840 OB842	11	17	17 20	To be held (BB) Evaluate '61:
OB8114			13	Evaluate 64
OB845			21	Evaluate 64
OB822	13		J)1	To be yield tested
OB826	2	*****	2	To be yield tested
OB829	7		- 11	To be discarded
OB813 OB833	15	2 13	18	To be yield tested To be discarded
OB830	16	<u></u>	9	To be distarded To be yield tested
OB839	ī	5	7	To be yield tested
OB847	****	9	15	To be yield tested
OB843			12	Evaluate 164
144-I		-	19	Being tested, Wn.
128-1			ΙŌ	To be continued (?)
L-2 L-8		- <u>11</u> 6	5 1	Being tested, Wn. Being tested. Wn.
E-2		8	16	Being tested, Wn.
E-21		7	4	Being tested, Wn.

Table 6. Selections discarded in 1960-62 on basis of preliminary quality evaluation.

1960	196 1	1962
Poor quality (USBA):	Low ≪-acid:	Low ≪ -acid:
C50017 (BB513-2)	C57004 (OB804)	C57002 (OB802)
G19128 (40-S)	C54049 (OB805)	C57007 (OB808)
G56017 (OB834)	C57005 (OB806)	C58113 (OB837)
Cl9C32 (OB819)	C57008 (OB809)	C55055 (OB812)
	C57010 (OB811)	
Low ∝-acid:	C58102 (OB816)	Poor quality (USBA):
C57003 (OB803)	C19022 (OB820)	C19020 (OB818)
C19103 (8-S)	C51026 (OB821)	
C19165 (95 - S)	C58104 (OB823)	
C57012 (OB814)	C58105 (OB824)	
C19233 (OB817)	C58108H (OB828)	
C56021 (OB838)	C58110 (OB832)	
	C19119 (24-S)	
Poor agronomic characters:	C19194 (142 - S)	
C57006 (OB807)		
C58101 (OB815)	Poor quality (USBA):	
C58106 (OB825)	BB519-5	
	C57009 (OB810)	

Preliminary Field Evaluation

No results were obtained from the "Preliminary Yield Trial" in 1963.

Advanced Field and Quality Evaluation

The 3-acre planting of 128-I at Weathers Ranch in the Willamette Valley was very well taken care of in 1963. Yield of dry hops was reported at more than 7 bales per acre and chemical analyses indicated 12% alpha-acid and 2.5 mls of oil per 100 grams.

A disease condition first noted in 128-I in California about 4 years ago was tentatively identified this year as Split Leaf Blotch virus. The condition was severe in Oregon on 128-I and was evident in Hallertau and Fuggle. Reports from England indicate that the disease was much more serious there in 1963 than it had been for some time. Apparently environmental conditions last season were more favorable than usual for disease symptom expression in both countries.

Since environment appears to play an important role in disease severity, it cannot be predicted what the situation will be in 1964. It is possible that Split Leaf Blotch will not express itself to as great a degree. However, the only solution to the problem is elimination of infected plants. If 128-I is released for commercial production, disease-free plants will have to be found from which to propagate replacements for all diseased plants now being grown in Washington, Oregon, and California.

Both plantings of 128-I in Washington (Allwardt Ranch and Seedless Ranch) were babies in 1963 because the original plantings had been either moved or used for propagation. The plants looked good at both places, except Split Leaf Blotch infection was apparent.

The 100-hill planting of HL Fuggle at Stauffer Ranch near Hubbard, Oregon was in excellent condition during late season. No data were obtained, but the plants were uniform, vigorous, and compared favorably with commercial Fuggle.

Variety Increase

The 3-acre yard on the Smith Farm near Corvallis was used to grow plots of 128-I, regular Hallertau, and Swiss Hallertau for maintenance of planting stocks. Two hundred cuttings of 128-I from this planting were sent to the Agricultural Extension Service in California for a trial planting at Cascade Hop Ranch near Yuba City.

Increase plantings such as this provide material for miscellaneous studies which present themselves from time to time. This planting was used in 1963 to furnish plants for a twine treatment experiment.

BREEDING BEHAVIOR. GENETICS. AND BOTANY

Cross Incompatibility

Data and observations obtained over a period of years indicate that certain crosses consistently produced large amounts of viable seed; whereas, other crosses seldom produce much seed. In some instances crosses between specific individuals are next to impossible to make.

An indication of incompatibility is the amount of whole or viable seed produced from a controlled pollination and the number of empty or aborted ovules. Following is a tabulation of compatibility relations between specific individuals used in the 1963 crossing program.

These data are included here only to constitute a permanent record; no conjectural discussion or analysis will be presented at this time. However, the problem of cross incompatibility is important and should be investigated sometime, and these data will furnish a basis for such an investigation.

Table 1. Notes on quality of seed from crosses made in 1963.

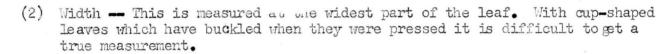
Cross No.	Female	Male	% Hulls
63001 63002 63003 63004 63005 63006 63007 63008 63009 63010 63011 63012 63013 63014 63015 63016 63017 63018 63019 63020 63021 63022	122 (LC) 122 (LC) 122 (LC) 122 (Fu) 222 (Fu) 222 (Fu) 311 (BG) 311 (BG) 322 (Ha) 322 (Ha) 322 (Ha) 322 (Ha) 422 (Ba) 422 (Ba) 422 (Ba) 422 (EC) 522 (EC) 522 (EC) 1023 DN (Bu) 1123 DN (135-I) 10-S (103-I)	121-2 121-1,2 524-2 106-S 110-S 119-1,2 5-29-4 123-S 106-S 110-S 119-1,2 526-4 123-S 121-2 121-2 121-2 121-2 121-2 121-2 121-2 121-2 121-2 121-2 121-2 121-2	50 50 50 50 50 50 50 50 50 50 50 50 50 5
63023	10-S (103-I	106 - S	>75

5-29-4

Table 2.	Percent hulls in	seed of crosses	involving each fema	ale.
ş	0 = 25%	25 - 50%	50 - 75%	75 - 100%
LC		122 x 121=2 122 x 524=2	122 x 421-1,2	
Fu	222 x 106-S 222 x 119-1,2	222 x 110-S		7 . 7
BG		311 x 5-29-4 311 x 123-S		
На	322 x 106-S 322 x 119-1,2	322 x 110-S		322 x 526-4
Ba		422 x 421-1,2	422 x 123-S	422 x 121-2
EC	522 x 121 - 2	522 x 421-1,2	522 x 123 -S	
Bu	1023 DN x 219 - 4			
135-I	1123 DN x 119-1,	,2		
103-1	10-S x 110-S	10-S x 119-1,2	(60)	10-S x 106-S
Table 3.	Percent hulls in	n seed of crosses	involving each male	•
Table 3.	Percent hulls in	seed of crosses	involving each male	75 - 100%
Table 3.			25.2	
3		25 = 50%	50 - 75%	
o ⁷ 421 -1, 2	<u>0 25%</u>	25 - 50% 422 x 421-1,2 522 x 421-1,2	50 - 75%	75 - 100%
6 ⁷ 421-1,2 121-2	0 25% 522 x 121-2	25 - 50% 422 x 421-1,2 522 x 421-1,2 122 x 121-2 222 x 110-S	50 - 75%	75 - 100%
121-1,2 121-2 110-S	0 25% 522 x 121-2 1.0-S x 110-S 222 x 106-S	25 - 50% 422 x 421-1,2 522 x 421-1,2 122 x 121-2 222 x 110-S	50 - 75%	75 - 100% 422 x 121-2
121-2 120-5 106-S	522 x 121-2 10-S x 110-S 222 x 106-S 322 x 106-S 222 x 119-2 322 x 119-2	25 - 50% 422 x 421-1,2 522 x 421-1,2 122 x 121-2 222 x 110-S 322 x 110-S	50 - 75%	<u>75 - 100%</u> 422 x 121 -2
121-1,2 121-2 110-S 106-S	522 x 121-2 10-S x 110-S 222 x 106-S 322 x 106-S 222 x 119-2 322 x 119-2	25 - 50% 422 x 421-1,2 522 x 421-1,2 122 x 121-2 222 x 110-S 322 x 110-S	50 - 75% 122 x 421-1,2	<u>75 - 100%</u> 422 x 121 -2
121-1,2 121-2 110-S 106-S 119-1,2	522 x 121-2 10-S x 110-S 222 x 106-S 322 x 106-S 222 x 119-2 322 x 119-2	25 - 50% h22 x h21-1,2 522 x h21-1,2 122 x 121-2 222 x 110-S 322 x 110-S 321 x 123-S	50 - 75% 122 x 421-1,2	75 - 100% 422 x 121-2

311 x 5-29-4

Description of Hop Varieties Grown in the United States

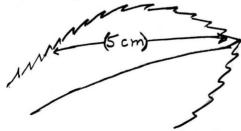

Objectives:

To furnish a description of the plant morphological, chemical, growing and brewing characteristics of hop varieties now being grown in the United States.

Materials and Methods:

The following account describes the methods used to determine leaf measurements and classification criteria set up to distinguish morphological differences:

(1) Length — This is taken from the tip of the middle lobe to the base of the leaf.


- (3) Pubescence The pubescence has been separated into the 3 groups distinguished by E. L. Davis. There were intermediate types, the dividing lines were made thus:

 Type 1. Hairs only found on veins running to the tip of a dentation.

 Type 2. Hairs found on veins running to the tip of a dentation and also on veins off this vein and those running to the cleft between dentations.

 Type 3. Hairs are found in the islands between the smallest veins. When
- (4) Number of dentations on the middle lobe -- When there are secondary lobes, the dentations are counted from above them. When there is only one secondary lobe the dentations are counted on the side opposite to it.
- (5) Dentations in 5 cms This measurement does not take the curve of the leaf into account.

only one or two could be found the 3 is put in brackets.

(6) Number of lobes — Example: 3-2-1-la. This leaf has 3 primary lobes, their veins branch at the base of the leaf.

Two secondary lobes, these branch off the primary lobes so close to the base of the leaf that they are nearly or equally large.

One tertiary lobe. This has branched off any lobe except the apical one, some way up the vein.

The designation "la" refers to a secondary lobe on the apical lobe.

(7) Depth of lobe clefts — This is the distance from the point of the cleft to the line joining the tips of the lobes forming the cleft. On the data sheets the measurements for one side of the leaf are on one line, and complementary clefts are recorded in pairs one above the other.

Results:

Data obtained on leaves collected in 1962 are summarized in Table 1. The leaves used were from different yards or areas as follows:

Late Cluster — 9 Wash., 2 Idaho, 1 Oregon;
Early Cluster — 8 Wash., 3 Idaho, 1 Oregon;
Fuggle — 3 Oregon;
Bullion — 1 Oregon, 1 Wash.;
Brewers Gold — 2 Oregon;
Hallertau — 2 Oregon;
Backa — 1 Oregon;
128-I — 2 Oregon, 1 Wash.

On the basis of the data, varieties can be tentatively classified on leaf morphology (Table 2). It should be pointed out that the classifications do not always hold true. For example, expression of lobing pattern is influenced by climatic and soil conditions, and development of secondary and tertiary lobes may vary considerably. Pubescence type, numbers of dentations per unit length, and ratios of lobe cleft to leaf length and width may be more uniform than other characters, but even these show some discrepancies.

Summary:

Mature hop leaves collected from several varieties in different yards in Oregon, Washington, and Idaho in 1962 were subjected to a detailed study of morphology. Data were obtained on lobing pattern, pubescence type, dentations on central lobes, length, width, and ratios of various measurements.

It appears to be possible to distinguish varieties on the basis of some of the morphological measurements, but additional study is needed to verify any conclusions reached to date. Data on number of dentations in 5 cm. of the central lobe, pubescence type, lobing pattern, and ratios of depth of lobe cleft to leaf length and width appear to offer the most promise for varietal identification.

The data obtained so far will be evaluated in light of recent published reports from Japan and Belgium and combined with data yet to be obtained on other varietal differences before a classification key can be constructed.

Table 1. Morphological measurements made on hop leaves collected from commercial hop yards and experimental plots in Oregon, Washington and California in 1962. All leaves were mature leaves from main vines at height of 5-6 feet.

	Total No. leaves examined	No yards	Dont of to	middle lobe	(L) Leaf length	(W) Leaf width	(LC) Depth of lobe cleft (Mm)	Ī	H % leaves in		% with primary only	% with secondary in only	% with secondary that and tertiary	% with secondary middle lobe	Fatio	N Ratio	7 Ratio
Late Cluster	173	12	21.3	10.9	158	190	68	< 1	77	23	11	66	23	16	.82	•36	•43
Early Cluster	167	12	20.2	11.1	160	192	70		81	19	13	54	33	29	•83	•36	•14)4
Fuggle	38	3	16.1	8.5	153	186	61	11	89	*****	30	68	2	CONTRACT	•84	•33	. 40
Bullion	29	2	18.4	8.6	187	261	82	52	48	***		21	79	****	•72	•31	•1414
Brewers Gold	25	2	17.9	9.0	174	247	83	48	52	en es	- 0.00	8	92	****	•72	•34	•48
Hallertau	22	2	17.8	7.6	153	183	70	en en	100	***	< 5	91	< 5	***	•84	•39	•46
Backa	9	1	15.1	6.2	154	174	75	****	100	64 63	e-1 (C)	100	-		•85	•43	•49
128 - I	39	3	19.9	10.5	אוענ	194	63	***	100	E-16 6/28	3	87	10		•75	•33	•1414

^{1/} I = Hairs on main veins only

II = Hairs on main and secondary veins

III = Hairs on veins and in islands between veins

Table 2. Tentative classification of hop varieties on basis of leaf morphology. Classifications are based on usual situations since varieties may occasionally fit other categories.

Dentations in 5 cent.	Pubescence type	Lobing pathern	of leaves	Ratio of lobe cleft depth to width	The second second second	of lobe cleft to length
*8 Hallertau, Backa *8-10 Fuggle, Bullion, Brewers Gold *> 10 Late Cluster, Early Cluster, 128-I	and II Brewers Gold	Many with primary only, few with tertiary Mostly with seconds and few tertiary Mostly secondary and tertiary, few with primary only Mostly with seconds and tertiary and mostly with secondary on central lobe	Hallertau, Backa, 128-I Bullion, Brewers Gold ary Late	 \$\lambda_{\text{.35}}\$ Fuggle, Bullion, Brewers Gold, 128-I .35- Late Cluster, Early Cluster >.37 Hallertau, Backa 		Fuggle Late Cluster Early Cluster Bullion, 128-I Brewers Gold, Hallertau, Backa

CR e5-2 (OAES Bot.:36) HOP DISEASES THEIR ETIOLOGY, EPIPHYTOLOGY AND CONTROL.

C. E. Horner

Reaction of Varieties and Breeding Lines to Downy Mildew.

Downy mildew was moderately severe in the 1963 growing season. Notes on the field reaction of varieties and clones were taken as part of a cumulative record which will be useful in planning future crosses and making selections.

Objectives:

1961 Annual Report, p. 37.

Procedure:

Each hill of each clone was examined and the number of infected shoots recorded. The hill was then rated as Resistant (R), Intermediate (I), Susceptible (S), or Very Susceptible (VS).

Results:

Of 254 plants evaluated in the Breeding Blosk, 156 were resistant, 54 susceptible and 44 intermediate in reaction to downy mildew. A detailed table of reaction to downy mildew is found in the appendix to this report.

In the Nursery Block 496 hills were evaluated. Of these, 222 were resistant, 180 susceptible, and 94 intermediate in reaction to downy mildew. Detailed data are tabulated in the appendix.

Data on evaluation of Wild American clones, Male Line, Selections, and Observation Blocks are detailed in the appendix.

Verticillium Studies

Verticillium wilt continues to increase in economic importance, although as a disease of hops it is not yet widespread. The Fuggle variety appears to be the most susceptible of the commercial varieties grown in the U.S. Two distinct morphological types of the Verticillium fungus causing wilt diseases are recognized: a type that produces microsclerotia as its dormant propagative body, and a type that produces "dauermycelium" which consists of darkly pigmented mycelial strands. In Europe and Asia these two types are recognized as separate species: Verticillium dahliae Klebahn and V. albo-atrum Reinke & Berthold. In the U.S. most authorities lump the two types under V. albo-atrum. In England and Continental Europe the severe Verticillium wilt disease of hops is caused by V. albo-atrum and in the U.S. all Verticillium pathogens found infecting hops prior to 1963 were of the V. dahliae type.

In 1963 diseased Fuggle hops were found to be infected with \underline{V} . albo-atrum, the type not previously found in hops in the $U \cdot S$. Because of the

great economic importance of this pathogen of hops in Europe, Laboratory and field tests were undertaken to learn more about the Verticillium pathogens of hops.

Objectives:

Tests were undertaken to:

- (1) Compare the morphological and cultural characteristics of <u>Verticillium</u> clones recovered from diseased hops.
- (2) Determine the pathogenicity of several isolates of <u>Verticillium</u> to hops, including the new "dauermycelial" strain.

Procedure:

- (1) Single spore clones of <u>Verticillium</u> dahliae from hops, peppermint and potato and <u>V. albo-atrum</u> from hops and potato were grown at 15°, 20° and 25°C. on three different nutrient media: potato dextrose agar, Czapk's sucrose nitrate, and a prune agar described by Talboys in England as a media suitable for differentiation of Verticillium species
- (2) Clones of V. dahliae from hops, mint, and potato, and a clone of V. albo-atrum from hops were increased aseptically on barley straw, a substrate that induces formation of resting structures. Rooted cuttings of the hop varieties Early Cluster, Late Cluster, Brewers Gold, and Fuggle and 128-I were planted in field plots infested with the 4 Verticillium clones. The experimental design consisted of 8 replications of single hill plots.

Results:

(1) Comparison of growth and morphology of <u>Verticillium</u> types on different media at 15, 20 and 25°C.

All clones grow well on all 3 media microsclerotia and "dauermycelium" formed earliest on prune agar, confirming the results of Talboys. All clones of V. dahliae grow more slowly at 15 and 20°C. than the V. albo atrum types. At 25°C. V. dahliae clones grew more rapidly than V. albo atrum clones. These results agree with published differences in temperature effects on growth of the two types.

Microscopic observations of all clones growing on all 3 media confirmed that the clone recovered from hops was morphologically identical with the \underline{V}_{\bullet} albo-atrum found on hops in Europe.

(2) Results from the field test of <u>Verticillium</u> types for pathogenicity to hop varieties will not be available until 1964.

Conclusions:

A type or species of <u>Verticillium</u> different from those previously recovered from hops in the U.S. was found and proved to be morphologically identical with the type causing severe disease in European hop gardens. The importance of this new strain of <u>Verticillium</u> will not be known until

pathogenicity and host range tests are completed. Because the newly discovered strain is so similar to the type so economically important in Europe, it is important to determine its pathogenicity to hop varieties grown commercially in the U. S.

Control of Verticillium Wilt

A field trial was established to determine if soil fumigation would be effective and economically feasible for the control of Verticillium wilt in hop yards. Vapam and Telone at 75 gallons per acre and Vorlex at 50 gallons per acre were applied to 5 replications of plots containing 55 hills each. Applications were made in September, 1963 and the treated area was replanted to Fuggle hops in March 1964. Data will be taken on the incidence and severity of disease annually for a 3 year period.

CR e5-4 (OAES FC:36) IMPROVING YIELD AND QUALITY OF HOPS BY PRODUCTION AND MANAGEMENT PRACTICES.

C. E. Zimmermann

The major objective of this line project has been the development of effective cultural and management practices for growing hops. An understanding of the physiological processes associated with yield and quality of hops has provided an additional means of interpreting field data obtained from cultural trials. Knowledge of various physiological changes is also of value to breeding, disease, and quality studies.

In 1963 project studies were confined to the following lines of work:

- (1) Investigations relative to cone pickability in hops.
- (2) Effect of permanent grass cover on Fuggle hops.
- (3) Use of herbicides on new hop plantings.
- (4) Effect of trellis heights on performance of hop varieties.
- (5) Study of endogenous gibberellins in hop cones.
- (6) Test of treated paper twine.
- (7) Effect of hormones on root development of hop rhizomes.

Investigations relative to Cone Pickability in Hops.

Objectives:

- A. To establish a method for the objective measurement of susceptibility to come breakage during hop picking.
- B. To determine the extent to which various factors involved in the production of hops influence pickability.
 - 1. Maturation
 - 2. Varieties
 - 3. Physiology
 - h. Fertility

Reasons for undertaking the work:

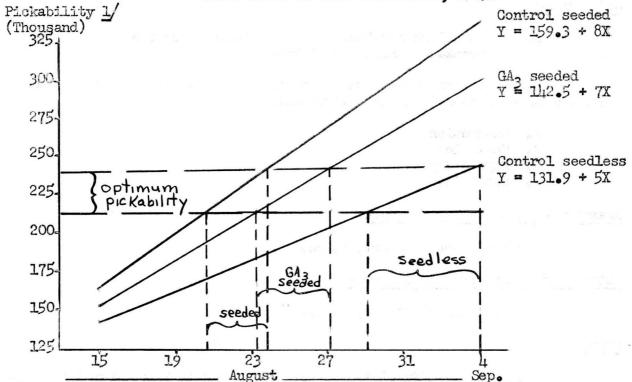
See 1962 Annual Report, p. 34.

Nature and extent of previous work:

See 1961 Annual Report, p. 39.

Procedure:

Two blocks of 'Fuggle' hops were treated when vines were 5 to 6 ft. long, with 5 ppm of an ester gibberellate formulation at the rate of 100 gallons per acre. One block received an additional treatment, at the time cones were developing (August 6), which consisted of 20 ppm indole-3-acetic


acid. Samples and data were collected periodically from these two blocks and also from comparable blocks of control seeded and seedless Fuggle hops. Pluckability values were obtained by sampling 20 plants, to include 5 readings from one secondary branch on each plant. Quality data were obtained by S. T. Likens. This study was conducted in cooperation with S. T. Likens, see A.R. CR e5-5.

Experimental results:

Data obtained are summarized in Table 1. Seeded Fuggle treated with gibberellic acid (GA2) had a smaller cone size (by weight) than the control hop and also required less force to detach from the vine. Seedless Fuggle produced the smallest cones. Accumulation of oil in GA2-treated and control hops was similar until harvest (August 26), but GA3 hops continued to increase in oil content, reaching a high of 3.2 mls 10 days after the normal harvest period. Alpha acid content was similar in all cases.

An objective assessment of pickability was attempted in 1963 by relating cone breakage (shatter) and cone detachment (pluckability). Pickability was determined as the product of percent shatter and gram-force for detachment. Changes in pickability of seeded, seedless Fuggle and GA3-treated seeded Fuggle during cone maturation are shown in Figure 1. This approach in relating pickability with maturity was not attempted for practical application, but as a means to evaluate the influence of direct and indirect effects on shatter.

Figure 1. Change in Pickability of three different Fuggle hops during the three weeks of cone maturation, 1963.

High pickability value, a product of percent shatter and gram force pluckability, would indicate poor pickability. Seeded hops were harvested

by machine on Aug. 26 and seedless on Sep. 4.

Table 1. Quality and physical changes of Fuggle hops as influenced by seed content and exogenous hormones, 1963.

Sampling date	% D.M.	mg D.M. Cone	Oil Content1/	% Whole ² /	Pluckability3/	% alpha (dwb)4/	% beta (dwb) <u>4</u> /
Control-S	Seeded	Fuggle, Eas	st Farm	Section 1			
8/12	19.0	118	0.57	66.1	and see can		
15	19.0	121	0.97	49.8 48.5	347 364	7.0 7.8	3.2 3.4
19 22	20.7 21.5	113 135	1.29 1.74	40.5	396	8.1	2.9
26	21.1	129	2.40	29.0	** *** C)	8.3	3.1
29	21.9	128	2.43	34.0	419	7.3	2.4
9/3	23.4	139	2 . 85	28 .1 9 . 2	445 348	8.7 8.3	2.5
6 7	21.3	112	2.97	10.1	401	(o O	3•3
iı.	24.2	117	2.98	12.5	372	8.1	3.1
Control-S	Seedles	ss Fuggle, S	Smith Yard				
8/13	17.9	84	0.61	65.9	um cts	7.0	3.4
15	18.7	88	0.71	53.7	304	6.5	3.3
19	19.5	90	1.11	57.8	362	7.8	3.4
22 26	22 . 3 20 . 3	98 80	1.38 1.97	45•3 48•5	314	7.2 7.1	2.6 3.2
29	21.0	99	2.22	39.5	and Call State	6.7	3.7
9/3	23.4	98	2.65	41.5	399	8.8	3.0
6	218	82	2.76	9.1	351	8.6	3.8
12	22.1	104	2.99	15.4	351	7.2	3.0
					ppm @ 5 ft.)		
8/12	18.2 20.1	80 91	0.91 0.83	70 . 4 56 . 0	324	7.6	3.5
15 19	21.2	107	1.26	47.4	331	7•3 8•0	3.0 3.5
22	20.8	94	1.76	37.9	339	8.0	2.5
26	21.2	109	2.32	35.5	010 mail 478	9.2	2.9
29 9/3	22.3 24.1	106 127	2.76 2.87	36 . 4 34 . 4	401 362	6 . 9 8 . 7	3•7 3•0
6	22.1	91	3.21	8.9	349	8.7	3.9
11	22.4		3.18	12.5	331	8.4	3.5
Treated-S	Seeded	Fuggle, Ea	st Farm ("Gi	brelate" 5	ppm @ 5 ft. + 20	mqq AAI	cone)
8/13	19.8	123	0.76	58.0		6.6	3.2
15	21.2	118	0.86	53.0	347	6.7	3.0
19	20.5	103	1.18	44.2	368	7.9	3.4
22 26	21.5 21.7	89 117	1.70 2.15	44.8 34.8	381	7•5 8•9	3.0 2.4
29	21.9	128	2.79	38 . 1	432	6 . 5	3.8
9/3	23.4	121	2.92	29.4	399	7.2	2.8
11	22.7	95	3.18	17.6	396	8.2	2.9
7/ Oil 0	ontent.	happarma	as ml oil/10	00g D.M.			

^{1/} Oil Content expressed as ml oil/100g D.M.

[%] Whole from 300g green hops (wt. whole cones/300).

^{3/} Pluckability expressed as gm-force needed to pick cone from petiole.

(average of 100 readings)

^{1/} Spectrophotometric determination on ground, lab-dried hops.

We attempted this approach in 1961 and 1962 with a tumbling machine to compare cone toughness and in 1963 a precision dynamometer was used to determine the toughness of the cone petiole. These are only 2 factors related to the machine pickability of hops and one is aware of variation in growth form and cone lateral morphology between varieties that also contribute to differences in pickability. Assuming there was a similarity in overall morphology of the 3 Fuggle hops in Figure 1, then differences in pickability were due to changes in pluckability and/or shatter. There was a significant positive correlation between percent shatter and pluckability of control seeded Fuggle during cone maturation. GA3-treated hops had a more favorable pickability value than control hops and this difference was accomplished through a lower picking force requirement of GA3 hops. An off-station trial with seeded Fuggle treated with 10 ppm GA3 applied at the 5-foot stage showed 25% less plucking force than control Fuggle. Favorable pickability of seedless Fuggle was due to a decrease in both percent shatter and the force necessary to detach cones.

A pluckability average for a variety will give some indication as to its machine pickability. Plucking force of seeded hops and seedless hops was noted to be in the average range of 500 to 600 and 400 to 500 grams respectively (Table 2).

Pickability ratings during machine harvest took into consideration amount of shatter loss, sidearm and cluster loss, physical appearance of picked cone, leaf and stem content, and an evaluation of the picked vine. Differences in plant morphology (length of sidearms, brushiness, type of cone cluster etc.) between varieties influenced the pickability ratings of those which had comparable pluckabilities, such as OB-835 and OB-842. In other cases, such as OB-840 a variety can have poor pickability because cones are highly susceptible to shatter even at a low plucking force. See this A.R., CR e5-1

The objective method employed to determine pickability, as the product of percent shatter and gram-force plucking, was further tested on seeded Fuggle during a 2h hour period. Hop growers, in general, are aware of the difference in pickability of hops during daylight and dark hours. Hop harvesting with portable picking machines is usually accomplished during darkness (1900 to 0300 hrs.) due to a noted increase in picking efficiency. Figure 2 shows the relationship of pickability to environmental changes. Pickability improves near sunset, at which time the relative humidity increases and temperature decreases. During the period between sunset and sunrise, percent dry-matter of the cones showed a slight decrease and both plucking force and shatter decreased.

Pluckability and shatter data were obtained from a replicated experiment on seeded Fuggle treated with foliar application of Mg, Fe and Mn chelates plus a surfactant. Plots received a five inch irrigation prior to the chelate application on July 24. Data were only obtained from the 2 pound per acre rate, since higher rates caused some phytotoxicity, (Table 3). A statistical significance (P.05) difference was noted in plucking force due to treatment. There was no difference between control and Fe-treated hops, but the Mg and Mn treatment required significantly less force to detach cones and Mn resulted in hops having the lowest force requirement. Improved pickability of Mg and Mn fertilized hops was due to a significant decrease in the force required to detach cones.

Table 2. Pluckability measurements and pickability ratings of seeded hops determined during machine harvest, 1963.

Variety	Picking Date	Pluckability 1/	Pickability 2/
Seventeen :	seeded hop selection	as and 2 seeded commerc	ial varieties:
OB 801	9/14	669	Poor
OB 812	8/30	200 200	Poor
OB 813	8/30		Good
OB 822	9/13	992 + 3/	Poor
OB 826	9/13	846 + 	Good
OB 827	8/30		Poor
OB 829	9/13	891 ÷	Poor
OB 830	9/9	944 +	Average to poor
OB 831	9/14	7+7+7+	Very good
OB 833	9/17	602 +	Average
OB 835	9/17	578	Very good
OB 839	9/9	889 +	Average to poor
ов 840	9/17	552	Very poor
OB 8LL	9/9	6146	Average
ов 842	9/23	560	Poor
OB 843	9/17	578	disperse and see
OB 845	9/9	693	Very poor
Fuggle	8/27	492	Average
Late Cluste	er 9/23	695	Average to poor
Form gashl	ass commercial hop w	rarieties and 3 seedles	s advanced lines:
Fuggle	9/4	月8	Average
Late Cluste		657 1.60	Poor
Brewers Go		460	Very good
Hallertau	8 / 27	413	Average to good
344-I	9/14	392	Good

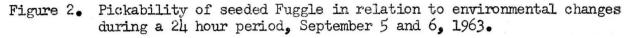
Gram-force to detach cone from its petiole (average of 20 readings) Visual evaluation

135-I

128-I

100

466


Poor

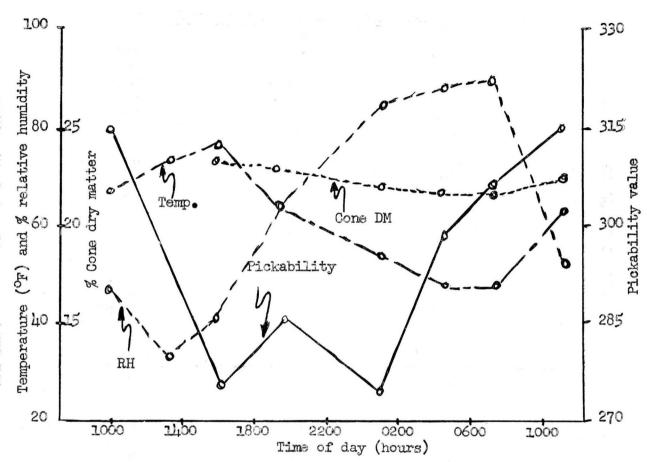

Very good

Table 3. Data obtained from minor element trials on seeded Fuggle, 1963.

Treatments	Pluckability (grams)	Shatter (% whole)	Pickability value
Control Fe EDDHA (2 lbs Mg EDTA " Mn EDTA "	1401	10.1	360.5
	386	8.6	352.8
	358	5.9	336.9
	333	5.0	303.7

Average includes 1000 g. readings which were in excess of the 1000 g. capacity of the dynamometer.

Summary and conclusions:

Gibberellic acid at 5 ppm. applied to seeded Fuggle hops when vines were 5-feet long, improved pickability by decreasing toughness of cone petiole, decreased cone size, and increased oil accumulation during the period following standard harvest. Indole acetic acid applied to GA_3 -treated hops did not alter pickability or quality from that noted with GA_3 alone.

Detachment force of cones and percent shatter of seeded Fuggle were positively correlated. Varietal differences in plucking force were related to machine-harvest pickability ratings.

Foliar application of magnesium and manganese chelates to hops during the growing season significantly increased pickability of seed Fuggle.

Improved pickability of hops, expressed through a decrease in shatter and/or plucking force, was accomplished and noted by the following: hormones, darkness, change in trellis heights, seed content, genetics, nutrition, and maturity.

Effect of Permanent Grass Cover on Fuggle Hops.

Objectives:

- (1) To determine the effect of permanent grass cover, without cultivation, on seeded hop production.
- (2) To study the influence of permanent grass on soil compaction.

Reasons for undertaking the work:

Spring cultural operations are often performed when soil conditions are unfavorable for heavy tractor traffic. The soil adjacent to the permanently spaced hop hills are subject to heavy pressure from tractor wheels during the performance of management practice. Hardpans or plow soles have been noted in several hop yards with a heavy soil condition. Soils in most hop yards are low in organic matter and receive only a small additional supply of O.M. amually, usually contributed by a winter cover crop. These hardpans may influence the penetration of hop roots and restrict their ability for nutrient and water uptake. A permanent grass cover would also eliminate the necessity of frequent field cultivations and further reduce the cost of hop production.

Nature and extent of previous work:

English workers have conducted trials with hops grown in permanent grass and concluded that the grass was competitive with hops for nutrients and moisture and also developed favorable conditions for downy mildew infection. Herbicides were not used in their study as a means of controlling weeds between hills in a row. The use of grass between the hop hills was found to be undesirable. Permanent grass has been used successfully in Northwest orchards and vineyards to improve physical properties of soil.

Procedure:

A permanent over crop trial was established on four year old Fuggle hops in the fall of 1963 with 3 treatments, replicated 6 times in a randomized block design. The trial was established on an area which was fumigated with "D-D" for symphyllid control in 1959. Each treatment consisted of a three hill plot with a border. Treatments consisted of (a) ungrassed, normal cultivation (check); (b) grassed without sloping; and (c) grassed, with sloping. Figure 1 shows the plot description. Sloping or plowing is used to describe the early spring mechanical operation of removing a layer of soil from each side of the hop hill to cut off rhizomes and expose the hill for additional hand pruning. All treatments will be pruned, but the unsloped treatment will not have the rhizomes cut from the hop hill. The grass treatment, which is sloped, will be harrowed to push the displaced soil to the hill. Grass plots were seeded to "Illahee" creeping red fescue at the rate of 10 pounds per acre, on Sept. 25, 1963, with a 5' "Gandy" spreader. The 3' area between the 8° spaced plants was sprayed for weed control with 3.2 pounds of active Simazine per acre on Oct. 15, 1963. The herbicide phase of this study was conducted with the cooperation of the Weed Project, Farm Crops Dept., Oregon State University. The grass treatments will not receive any cultiva-tion other than an annual fertilizer placement as a band 8" from the hop hills. This trial will be conducted for three years, during which time hop yields and quality will be evaluated.

Soil bulk densities and conductivities were determined in the fall of 1963 and will be repeated in 1966 to determine changes in soil morphology. Soil samples were obtained on December 11, 1963, from three locations within each plot and at three depths within each core. The time of sampling was delayed until soil moisture was at field capacity. The three core locations and samples within core, are shown in figure 1. The core locations were determined as follows: one core was located in between the rows in an area which did not receive any wheel traffic, the second core was located in an area in which wheel traffic was within 12" of the location, and the third was located in an area of wheel traffic. The soil sample was obtained with a tool equipped with a brass ring having a capacity of 68.83 cu. centimeters. Infiltration rates were determined on each sample with a fabricated apparatus obtained from the Soils Department at Oregon State University. Infiltration rates were determined as milliliters of water per minute collected after five. ten, and twenty minute durations. The soil samples were dried at 100°C. for 24 hours and weighed for bulk density determination. The soil samples from the same level of each of the three cores within one plot were composited for organic matter determination.

Experimental results:

Data obtained on infiltration rates, organic matters, and bulk densities of the soil samples will not be summarized until the conclusion of the experiment. The average bulk density and organic matter control of composite samples from 3 core locations in each plot are listed in Table 1. The organic matter increases with sampling depth and appears to have an inverse relationship with bulk density. Field observations during the winter indicated that excellent weed control was obtained with the herbicide treatment. The grassed areas showed that a fair fescue stand was established, but also included annual bluegrass and groundsel. An attempt will be made to control undesirable species in the grassed area with periodic mowing during the summer months.

Figure 1. Plot diagram of Permanent Cover Crop Trial on Fuggle, 1963.

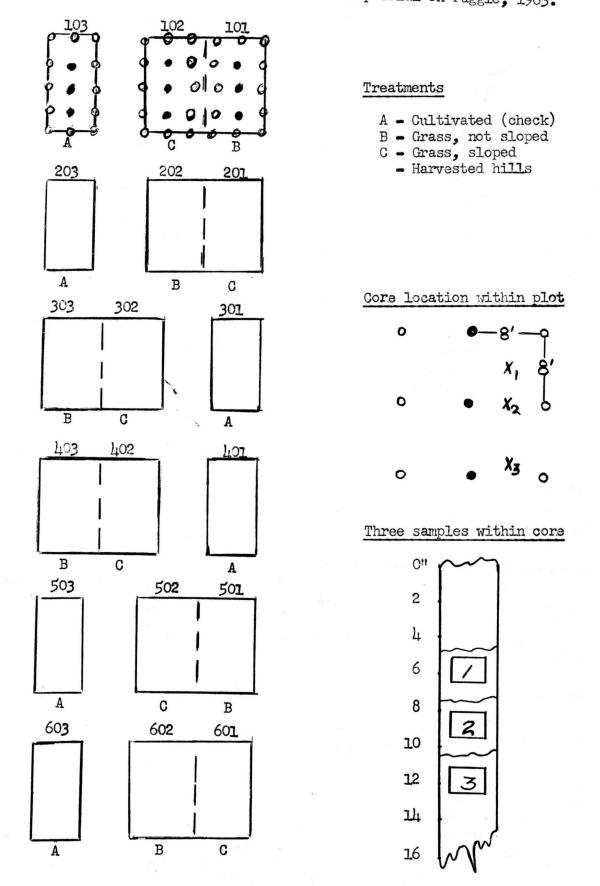


Table 1. Average bulk density (BD) and organic matter (OM) from 3 core locations, 1963.

			Grass Depth	-5 - 1.**		Fallow Depth	
		1	2	3	 1	2	3
Rep.							
I	OM BD	1.91 1.61	1.72 1.65	1.47 1.59	1.97 1.56	2.87 1.35	3.06 1.36
II	OM B D	1.85 1.58	2.29 1.42	2.80 1.33	1.60	1.72 1.64	1.47
III	OM RD	1.78 1.59	2.48 1.38	2.55 1.37	1.91 1.59	2.42 1.41	2.48 1.41
IV	OM BD	1.78 1.59	2.29 1.41	2.68 1.38	2.04 1.52	2.17 1.39	2.61 1.35
Δ	OM BD	1.78 1.59	1.66 1.57	1.97 2.40	1.47 1.59	1.47	2.04 1.38
ΔI	OM BD	1.72 1.51	1.59 1.42	2 . 04 1 . 38	1.53 1.64	1.40 1.66	1.27 1.60

OM - percentage organic matter

BD - grams per cubic centimeter

Use of Herbicides on New Hop Plantings.

Objectives:

To determine the phytotoxic effect of several herbicides on hop plantings established on different dates.

Nature and extent of previous work:

The herbicides used in this experiment have been shown to control shallow rooted weed species in several perennial crops. The experimental use of these herbicides on hops has not been conducted with rhizome plantings. Application of high concentrations of Diuron and Simazine has not displayed any phytotoxicity on established hop crowns (see Annual Report 1960, page 71).

Procedure:

This study is being conducted in cooperation with the weed project at the Farm Crops Department, Oregon State University. Fuggle rhizomes were planted December 16, 1963, in a randomized block consisting of five-hill plots and three replications. On December 18, 1963, Simazine and Atrazine were applied at different rates, followed by a spring application of Bromasil at different rates. Treatments are listed in table 1. The chemicals were applied in a three foot strip over the hop hills at 40 gallons solution per acre. At the time of application in December the area was covered with three weed species, namely groundsel, chickweed, and annual bluegrass. The herbicide Bromacil is an excellent control for quackgrass but due to its solubility, the time of application was delayed until spring rains had subsided.

A winter and spring planting of Fuggle hops was established in a randomized block with three replications in five-hill plots and subsequently treated with Bromacil in April. Table 2 lists the treatments for the winter and spring trial.

Table 1. Herbicide treatments applied to fall planting of Fuggle.

No.	Treatment		Lbs. active material/A. Concent.		Material /plot	Plot	Plot location		
1	Simazine Bromacil	(Fall) + (Spring)	2# L#	80% 80%	2.5 g 5.0 g	104	203	308	
2	Simazine	(Fall)	<u>_</u> #	80%	5.0 g	107	208	306	
3	Simazine	(Fall)	8#	80%	10.0 g	102	206	307	
4	Atrazine	(Fall)	L#	80%	5•0 g	101	207	302	
5	Atrazine	(Fall)	8#	80%	10.0 g	108	202	301	
6	Bromacil	(Spring)	L#	80%	5.0 g	106	204	305	
7	Bromacil	(Spring)	8#	80%	10.0 g	103	205	303	
8	Check					105	201	304	

Notes: Rhizomes planted Dec. 16, 1963. Fall treatments applied Dec. 18, 1963, spring treatments applied Apr. 2, 1964.

Table 2. Bromacil treatments applied to winter and spring plantings of Fuggle.

Treatment	Lbs. active material/A.	Concent.	Material/plot	Plot	loca	tion
1. Bromacil	4	80%	5•0 g	103	201	30 3
2. Bromacil	8	80%	10.0 g	101	203	301
3. Check				102	202	302

Notes: Winter trial was planted Feb. 14, 1964, treated Apr. 2, 1964. Spring trial was planted Mar. 26, 1964, treated Apr. 2, 1964.

Results from this trial will include data on weed control, residual effect of chemicals in soil, observations of chemical phytotoxicity. The productivity of hops will be evaluated together with overall growth behavior which might be attributed to chemical treatments.

Results and Discussion:

Simazine and atrazine applied in fall resulted in good weed control, but observations on other treatments could not be made due to the time of application. Data obtained this spring will be included in the 1964 Annual Report.

Effect of Trellis Heights on Performance of Hop Varieties.

Objectives:

See Annual Report, p. 41, 1962.

Nature and extent of previous work:

See Annual Report, p. 41, 1962.

Procedure:

See Annual Report, p. 41, 1962.

In 1963 pluckability data were obtained from this trial as additional information to determine differences in pickability. This phase of study is described in more detail in the AR under the heading, "Investigations into causes of cone pickability in hops." One secondary lateral from each plant in the experiment was removed at harvest and the gram-force necessary to break the peduncle was recorded on 5 cones of each lateral. Quality data were supplied by S. T. Likens.

Experimental Results:

The yield data are summarized in Table 1 for the last 2 years of this study.

Table 1. Yields per acre (pounds adjusted to a common dry-down percentage) of six hop varieties on three trellis heights in 1963. Averages for 1962 included.

Trellis Ht•	Fuggle	Late Cluster	Brewers Gold	<u> 1)//-</u> I	135 - I	128 - I	1963 Avg•	1962 Avg•
16 ft. 18 ft. 20 ft.	1030 900 1050	9 20 920 1080	17 40 1740 1620	11;30 1660 1560	850 1040 1150	1600 1580 1800	1260a 1310a 1380a	1330a 1400a 1490a
1963 Avg. 1962 Avg.		970b 1080b	1690a 1380b	1540a 1760a	1010b 1150b	1650a 1960a		

Results from the second year of the height of trellis study were similar to those of 1962 in that varietal differences were exhibited. Brewers Gold, 128-I, and lim-I each yielded 3 bales per acre more than the other 3 varieties.

Table 2. Quality characteristics of hops grown on different trellis heights. 1963.

Trellis Ht.	Fuggle	Late Cluster	Brewers Gold	1)1/1 - I	<u>135-I</u>	128 - I	1963 Avg•	1962 Avg•
% ≪-acid	(DWB)							
16 ft. 18 ft. 20 ft.	7•37 7•59 7•55	8.42 7.81 7.22	13.52 13.53 13.88	5.57 5.51 5.62	3•94 3•89 3•92	14.12 13.90 14.70	8.82a 8.71a 8.82a	5.77a 5.62a 5.60a
1963 Avg. 1962 Avg.	7.50c 5.67c	7.82c 6.46c	13.64b 7.57b	5.57d 2.94d	3.92e 2.67d	14.24a 8.67a		
% /3 -acid	(DWB)							
16 ft. 18 ft. 20 ft.	3.13 3.09 3.09	4.34 3.30 3.84	4•77 4•74 4•75	4.63 4.66 4.47	6.00 6.07 6.10	4•59 4•54 4•07	4.58 a 4.40a 4.39 a	4.26a 4.17a 4.16a
1963 Avg. 1962 Avg.	3.10e 2.77c	3.83d 3.22c	4.75b 4.16b	4.59c 4.63ab	6.06 a 5.42 a	4.40 c 4.98 a b		

Means followed by the same letter are not significantly different at the 5% level according to Duncan's method.

Brewers Gold and 128-I both displayed high \propto -acid content in 1963, while other varieties showed a substantial increase in quality (Table 2) Variety 144-I has displayed an excellent agronomic character in the past, but until this year it has been below 4.5% \propto -acid.

Evaluation of hop pickability in 1963 was based on visual observations during mechanical harvest and on pluckability data obtained with a dynamometer. Data are summarized in Tables 3 and 4.

Table 3. Visual observation recorded during machine harvest of Height of Trellis Study, 1963.

Variety	Harvest Date	Cone Shatter	Detached Sidearms & Clusters	Detached Leaves	Overall Rating
Fuggle L.C. B.G. 1)44 135 128	Sep. 4 13 17 4 9 17	3 1 2 3 1	3 7 1 1 8 1	4 6 1 2 7 2	Ave. Poor V.good Good Poor V.good

Note: Rating was based on a percentage basis, 0 would indicate none and 10 would be 100%. A detailed description of harvest observations is reported in the Appendix. The overall rating also considered physical properties not listed in the above table.

Table 4. Pluckability data determined at harvest from six hop varieties on three trellis heights in 1963.

Trellis Ht.	Fuggle	Late Cluster	Brewers Gold	<u>]]]</u>	135 - I	128 - I	Mean
16 ft. 18 ft. 20 ft.	473 418 467	562 6 57 562	457 460 460	332 392 380	371 400 386	438 466 480	438a 466b 456b
Mean	453b	594 a	459b	368c	386c	459b	

Summary & Conclusions:

Trellis heights did not cause a "significant" yield change, but as in 1962 a 5% average yield increase was noted for each 2-foot increase in height. These differences may indicate a reduction in harvest efficiency at lower trellis heights since less cone loss was observed from hops grown at 18 feet than at 16 feet. Cone loss was pronounced for the more vigorous varieties grown on low trellis (Table 3).

A significantly lower plucking force was obtained for varieties grown on a 16-foot trellis (Table 4). Differences in pickability due to height were not directly related to pluckability but varied with vigor and growth form displayed by a variety grown on different trellis heights. Poor picking of Late Cluster and 135-I was evident at all heights but cone loss (as clusters and sidearms) decreased with an increase in trellis height for both varieties.

All varieties had more alpha-acid than last year in common with the general situation in Oregon. An incomplete summary showed all varieties except 135-I had more than 4.5% alpha-acid; Brewers Gold and 128-I had 13%.

Study of Endogenous Gibberellins in Hop Cones.

Objectives:

- (a) To develop a laboratory procedure for detecting endogenous gibberellins on hop strobiles.
- (b) To determine qualitative changes in endogenous gibberellins.

Reasons for undertaking study:

Exogenous applications of gibberellic acid (GA₃) to hops during an early vegetative stage of growth (Annual Report 1961) stimulates floral morphogenesis. An understanding of the hormone relation in floral differentiation will provide a means to better interpret plant response in various cultural trials. Qualitative and quantitative differences in gibberellins found in hop varieties could be used as a standard in evaluating progenies from a breeding program. Hormones are related to physical differences between seeded and seedless hops and may have an important role in the biosynthesis of quality components in hops.

Procedure:

Green hop samples were hand-picked, twice weekly, during the growing season from Fuggle hops. Samples were obtained from seeded, seedless untreated hops and seeded hops treated with two different formulations of GA3. One set of samples collected during the week was extracted and the other frozen for later extraction. The extraction and separation of gibberellin-like substances from hops included the following procedure:

- 1. Homogenize 200 g. green hops in methanol and filter.
- 2. Adjust pH and extract with ethyl acetate to obtain neutral, basic and acidic fraction.
- 3. Acidic fraction is further separated with a cellulose column and developed with the following solvent order:
 - (a) petroleum ether
 - (b) chloroform
 - (c) n-butanol
 - (d) ethyl acetate
 - (e) ethanol (3% ammonium hydroxide)
- 4. Concentrate fractions.
- 5. Spot and develop thin layer chromatographic coated with silica gel.
- 6. Spray plates with acid, heat and observe fluorescence with UV light.

Gibberellin activity of eluates determined with bioassay testing on Phinney's dwarf maize and Morse's Progress No. 9 dwarf pea.

Experimental results:

Gibberellin activity was noted in seeded, seedless and GA3 treated hops. The presence of gibberellin-like substances was based on fluorescence characteristics, movement on the chromatographic plate, and growth elongation of bioassay plants. The separated gibberellin-like substances did not display chemical properties similar to GA3. Nearly all of the noted gibberellin substances were separated from the acidic fraction and developed with chloroform. Additional substances were isolated from the ethyl ether fraction which was a "clean-up" of the water phase from the acidic fraction.

Discussion:

Preliminary studies would indicate that endogenous gibberellin-like substances are present in seeded and seedless hop strobiles. Cone samples from hops treated with GA₃ apparently did not contain the hormone two months after treatment. It was not determined if the GA₃ had undergone a chemical degradation or chemically altered to another gibberellin.

Gibberellins have been considered to be insoluble in non polar solvents, as chloroform. Recently it has been established the gibberellins 5 (GAz) and 7 (GAz) are soluble in chloroform in acid solution. The Rf values of gibberellin-like substances extracted from hops are similar to the value of GAz standard, (Rf0.70 with benzene-acetic acid-water solvent system). GAz has a Rf of 0.35 with the same system, but there is the possibility that the gibberellin found in the chloroform fraction may be Az or Az, most likely Az. English workers have found GAz in runner beans, but the presence of GAz in plants has not been noted to date.

Test of Treated Paper Twine

Objectives:

See 1962 Annual Report, p. 46.

Reasons for undertaking the work:

See above.

Procedure:

See above.

In 1962 two chemical treatments were included in the study whereas in 1963 an additional chemical treatment was included along with untreated coir string. The study included 2 replications with a 21-hill plot strung with 2 strings. This resulted in a total of 84 strings for each treatment. The study was conducted on Hallertau hops grown on a light sandy soil. Strings were anchored with a metal W-clip pushed into the soil with a hand tool to a depth of 8 to 10 inches. Study was initiated May 13, 1963 and terminated September 30, 1963.

Treatments included were as follows:

- 1. Treated paper, creosote -- WOT 5850,
- 2. Treated paper, 10% Dowicide WOT 5852,
- 3. Treated paper, 2% copper as copper napthanate -- WOT 5851,
- 4. Untreated coir, 5. Untreated paper.

Results and discussion:

Results were obtained by a physical examination of each string after four months, which is the period of time strings are necessary during the growing season. The results are summarized in the following table.

Treatment	% strings securely anchored in ground	% strings which broke with less than 50 lb.pull	
Paper (treated creosote WOT 5850)	64	6	30
Paper (treated 10% Dowicide WOT 5852)	10	19	71
Paper (treated 2% CuNapthanate WOT 5851	79	21	0
Coir (untreated, old, poor grade) 1/	16	16	68
Coir (untreated, new) 2/	70	20	JO
Paper (untreated)	all rotted o	ff within 6 weeks	

^{1/} only 64 strings tested.
2/ only 20 strings tested.

The untreated paper strings rotted off after being anchored a few weeks and within six weeks these strings were pulled out of the ground by the action of wind. At the end of six weeks a large percentage of the Dowicide treated strings were also rotted and pulled out of the ground. The Dowicide treatment consisted of 10% pentachlorophenol and in 1962 a chemical concentration of 5% resulted in the same amount of rot as obtained with the 10% concentration. The strings which broke after applied pressure would still be capable of supporting vine weight, but this test would indicate a difference in degree of rot due to the chemical.

Summary and conclusions:

Paper string treated with copper napthanate displayed a high degree of resistance to rot when anchored 8 to 10 inches in the soil. Observations made on this study conducted on sandy soil have confirmed our results obtained in 1962 with strings anchored in heavy soil. Pentachlorophenol treatment, at a 5 or 10% concentration, was unsatisfactory in preventing rot.

On the basis of this study, conducted for 2 growing seasons, it would appear that satisfactory results could be obtained with a sub-surface anchored hop twine if paper string was treated with copper napthanate or if a heavy grade of untreated coir string was used.

Effect of Hormones on Root Development of Hop Rhizomes

Objectives:

To determine the effect of several chemicals on root initiation and elongation of hop rhizomes.

Reasons for undertaking study:

This particular study was part of a preliminary greenhouse trial made for one year. The results will be used to modify future studies.

Hop plantings are usually established with rhizome cuttings and result in a good stand if planted in late fall or early spring. New plantings in Oregon do not reach maximum production until the third harvest year; therefore, growers have established "nurseries" from which they plant year-old-crowns instead of cuttings. Many times it is not possible to have nursery stock available of a particular variety for planting.

This study was initiated at the request of several Oregon hop growers to determine the effect of chemical growth regulators on hop rhizomes, whereby a more vigorous cutting would result in an initial yield increase and possibly resist symphylid damage.

Nature and extent of previous work:

It has been established that hop softwood cuttings (above ground shoots) had an increased root set when treated with 20 to 40 ppm indole-acetic (IAA) or indole-butyric acid (IBA). (See 1956 AR, p. 80). Studies on strawberries have indicated an increase in berry production from plants treated with IBA plus kinetin due to an increase in number and length of annual feeder roots.

Procedure:

There are numerous chemicals available for use in this type of study, but the number was limited to those which were favorable for rooting of hop softwoods and other comparable rootstock. The study was also limited to those chemicals which were most readily available. Five chemicals were selected and of these, two are known to promote root initiation, namely, indole butyric

acid and boron, whereas the other three chemicals, kinin (kinetin), gibberellin, and lipids are involved in plant elongation.

Table 1 is a listing of chemical treatments and concentrations used in the study. The chemicals were used alone and in combinations of two, but did not include combinations of three, four or five chemicals. The study included 15 chemical treatments, plus a tap water check, a commercial dust of indole butyric acid, "Rootone", and a normal planting of the untreated cutting. The amount of chemical absorbed by the cuttings was altered by different soaking times in the water solution, instead of using different concentrations. A 20-hour soak was thought to be optimum and 6- and 48-hour soaks were established as minimal and maximal durations.

Ten cuttings from each treatment, a total of 500 cuttings, were planted in a greenhouse soil rooting bed with a soil temperature of 55°F. and 50 to 65°F. air temperature. The soil temperature was lowered to be within range of field conditions in Oregon during the early spring hop planting operation. It is a known fact that optimum rooting occurs under controlled conditions, at a 75°F. soil temperature and a cooler air temperature, but this range is only approached in the field.

A duplicate rooting experiment was established in the field with all the chemical treatments at the 6- and 20-hour soaking time. It was hoped that the field study would serve as a check on the greenhouse study and also permit an evaluation of plant vigor during the coming season.

One set of 5 cuttings from each treatment was evaluated for root development after 3 weeks. The remaining set of 5 were evaluated after 6 weeks. Data were obtained on root length and number, along with shoot length and number. Data from the field trial will be obtained in 1964.

Table 1. Listing of chemical treatments for rooting study with hop rhizomes, 1964.

1. Kinin (SD 8339) 2. Indole butyric acid Gibrelate "400" 3∙ 4. Boric acid Carbowax (JW-777R70-1) 6. Kinin + Indole butyric acid 7. * Gibrelate "400" 8. + Boric acid 9. + Lipid

```
Chemical Concentrations
Kinin (SD 8339) 5 ppm
Indole butyric acid 40 ppm
Gibrelate "400" 50 ppm
Boric acid (as boron) 20 ppm
Carbowax (JW-777R70-1) 5000 ppm
```

Chemical Treatments

10.	Indole	butyric	acid	+	Gibrelate "400"
11.	77	12	15		Boric acid
12.	-11	15	11	*	Lipid
13.	Gibrela	ate "400'	' + B	ori	ic acid
- 1	**	••	_		

14. " + Lipid 15. Boric acid + Lipid

16. Water (check)

17. "Rootone" (no soaking)

18. Dry check (no soaking)

Soaking Times for Each Treatment

| Six hours | Twenty hours | Forty-eight hours

Experimental results:

One set of 5 cuttings from each treatment was evaluated on February 5, 1964 for total root number and length. Data are summarized in Table 2. Photographs were obtained to supplement the data for determining the extent of rooting. Since some of the chemical treatments included growth promoting compounds, it was necessary to also consider top growth. Table 3 is a summary of shoot growth determined 3 and 6 weeks after treatment. The extent of root growth after 6 weeks was similar to that obtained at the end of 3 weeks; therefore, a visual evaluation was obtained instead of actual measurements. A detailed description of all treatments is included in the Appendix.

Discussion and conclusions:

The physiological response necessary for root initiation is related to the concentration of auxin. Normally plant cuttings initiate roots at the base of the cut stem due to the higher concentration of endogenous auxin at this area due to polar transport of the compound within the plant. Exogenous application of a synthetic auxin, such as indolebutyric acid (IBA), results in a higher concentration within the cutting and in theory stimulates root initiation along the entire length of the cutting. These auxin-like compounds also have the property of inhibiting root elongation when present in high amounts.

The extent of rooting (Table 2) was greatest on cuttings soaked in IBA, either alone or in combination with other chemicals. The number of basal roots appeared to be related to the presence of IBA in the treatment, with IBA treatments having the largest number of basal roots and gibberellin treatments having the least amount, if any, of basal roots. In comparison the IBA treatments resulted in the shortest shoot growth, whereas gibberellins had the greatest shoot elongation (Table 3).

Gibberellin and IBA treatments displayed the greatest differences, beneficial or otherwise, but it appeared that the soaking times were excessive for the cutting to absorb an optimal amount of chemical. Even Though the IBA increased the root number, it also inhibited root growth and stimulated cell proliferation which was subject to rot.

Treatments 16 and 18 were of particular interest, since both were regarded as checks. Treatment 16 was a check on the chemical treatments, so it involved a tap water soak, but treatment 18 was planted as a dry cutting common to commercial practice. Treatment 16 had shoot emergence before treatment 18 and the shoot development was uniform for all cuttings. The soaked check also developed a good root system the length of the cutting, averaging 16 roots per cutting, while the dry cutting only developed a few short roots at the base and also produced uneven above ground shoots.

Conclusions at this time would be premature, pending field observations in 1964 and a repeat of the greenhouse experiment using shorter soaking times.

Table 2. Summary of root initiation and elongation on hop cuttings three weeks after treatment. Cuttings were planted Jan. 10, 1964. Total root number was based on 5 cuttings.

Table 2. Summary of root initiation and elongation -- cont.

			Total number of roots					Ave. ler	
Chemical Treatment	Hours soak	Inter- nodal	Ave.	Nodal	Ave.	Basal	Ave.	Inter nodal	Nodal
12	6 20 48	1) ₄ 0 137 125	28 27 25	77 88 95	15 18 19	18 55 50	կ 11 10	2 1 1	0 0
13	6 20 48	115 61 63	23 12 13	23 29 11	5 6 2	2 0 3	0 0 1	1 1 2	2 1 0
1) [†]	6 20 48	74 43 43	15 9 9	12 24 15	2 5 3	0 0 0	0 0 0	1 0	1 1 1
15	6 20 48	45 33 29	9 7 6	30 12 13	6 2 3	2 22 32	0 4 6	1 1 2	2 2 1
16	6 20 48	55 63 57	11 13 11	19 27 21	14 5 14	5 14	1 1 3	2 1 1	1 1 1
17	0	21	4	6	1	20	71	0	1
18	0	17	3	12	2	28	6	ı	0

Note: Internodal and nodal indicate the location of root protrusion. Basal roots were those extending from the exposed pericycle at the base of the cutting. All basal roots were less than one inch in length.

Table 3. Summary of shoot number and length on hop cuttings, 3 and 6 weeks after treatment. Total shoot number was based on 5 cuttings.

Number of aerial shoots									
Chemical Treatment	Hours soak	2 - 5- Total	64 Ave •	2-26 Total	Ave •	Ave. shoot 2-5-64	t length(in) 2-26-64		
1	6	10	2	8	2	1);	18		
	20	10	2	6	1	7	28		
	48	11	2	9	2	8	22		
2	6	2	0	5	1	15	29		
	20	0	0	1	0	0	3		
	48	2	0	1	0	2	10		
3	6	11	2	9	2	16	28		
	20	10	2	10	2	19	29		
	48	16	3	6	1	13	40		

Table 3. Summary of shoot number and length on hop cuttings -- cont.

Number of aerial shoots Chemical Hours Number of aerial shoots 2-5-64 2-26-64 Ave. shoot length(in)								
Chemical Treatment	Hours soak	2-5. Total	-64 <u>Ave</u> •	Total	Ave.	2-5-64	length(in) 2-26-64	
14	6	6	1	10	2	8	16	
	20	10	2	9	2	8	20	
	48	11	2	8	2	6	22	
5	6	13	3	8	2	10	28	
	20	8	2	6	1	9	23	
	48	10	2	8	2	7	24	
6	6	4	1	1	0	կ	2	
	20	1	0	0	0	2	0	
	48	5	1	3	1	2	2	
7	6	11	2	5	1	1) ₁	կ2	
	20	20	1 ₄	6	1	11	37	
	48	13	3	9	2	12	25	
8	6	9	2	6	1	10	19	
	20	11	2	11	2	9	14	
	48	5	1	12	2	12	14	
9	6	9	2	9	2	11	22	
	20	12	2	7	1	8	36	
	48	11	2	10	2	8	19	
10	6	14	1	3	1	18	28	
	20	3	1	1	0	3	2	
	48	14	1	0	0	3	0	
11	6	5	1	7	1	7	1) ₁	
	20	2	0	3	1	6	25	
	48	0	0	1	0	0	2	
12	6 20 48	<u>կ</u> 1	1 0 0	6 1 3	1 0 1	8 2 2	23 2 2	
13	6	8	2	6	1	25	42	
	20	9	2	9	2	21	29	
	48	1 2	2	8	2	18	37	
7/1	6	10	2	5	1	20	39	
	20	8	2	6	1	19	4 3	
	48	13	3	6	1	13	35	
15	6	10	2	7	1	10	19	
	20	8	2	9	2	9	20	
	48	13	2	9	2	8	18	
16	6	10	2	13	3	11	19	
	20	11	2	6	1	9	28	
	48	8	2	8	2	10	18	
17 18	-	0 1 5	0 3	0 7	0	0	0 21	

CR e5-5 (OAES AC:36) CHEMICAL INVESTIGATIONS RELATIVE TO THE EVALUATION OF HOPS.

S. T. Likens

Objectives:

No change in objectives outlined in 1962 AR, page 49.

This line project maintains 8 phases of work carried out under 8 work-plans: 69 AC-1. Factors influencing storageability, AC-2. (USBA 8) Characterization of experimental lines by chemical analysis 74 of strobiles. AC-3. (USBA 23) Isolation of hop volatiles from brewing products, 78 Investigation into analytical methods, 97 AC-L. AC-5. Service work for cooperative agronomic and breeding trials, 102 105 AG-6. (USBA 20) Investigation into the cause of cone breakage, 106 AG-8. Influence of hops on fermentation products, AC-9. Quality changes during drying and baling. 107 110 ---- Miscellaneous (Hop extracts)

During 1963 major effort was concentrated on AC-2, AC-3, AC-5, and AC-6. While little was done on AC-1, AC-4, AC-8, and AC-9, these work-plan titles were maintained through 1963 (and will probably be retained through 1964) because they represent areas of work which will require attention if time and funds permit.

The report that follows will be in the order of the work-plan numbers.

AC-I FACTORS INFLUENCING STORAGEABILITY

Objectives, Reasons, etc.

See AR 1962, pp. 50, 51.

Summary:

Last year's attempt to stabilize \propto -acid in storage by preferential destruction of myrcene (believed to catalyze \propto -acid degradation) was completed. Compressed hops were found to lose oil at an accelerated rate compared with lose hops. It was determined that this loss was predominately myrcene, as hypothesized. The preferential destruction of myrcene in compressed hops was not found to enhance \propto -acid storageability.

A major difficulty arose after storage deterioration had progressed from 3 to 6 months: the **~**-acid determination became unreliable. Interferences were extracted which invalidated the spectrophotometric method which had been used to begin the experiment. The gravimetric method was known to be unreliable with aged hops and results by the conductometric method would not have been comparable to the initial analyses by the spectro. method. (reliable method for the assessment of **~**-acid, which could predict brewing potential, is a pressing need of the entire industry.)

Several pounds each of 5 commercial varieties were collected and held in refrigerated storage pending experiments with storage tests of extracts from them. The brewing industry was unreceptive to any work along these lines and the extracts have not been prepared.

It is believed, however, that the hop-extract approach to extensive storage stability offers promising possibilities. For example, samples of Late Cluster and Brewers Gold hop oils which had been sealed in glass ampoules for 13 years were compared (gas chromatographically) with 1963 samples and found to be in excellent condition. Since the oil content of hops is among the first of the quality components to degenerate, this information encourages the initiation of experiments with hop-extracts in spite of the brewing industry's present attitude.

Results:

Table 1 provides the data necessary to complete Table 2, p. 53, AR 1962. The entire data indicate that after 160 days, or about 5 months, at 68-70°F. the myrcene content of compressed Brewers Gold was essentially gone while oil from the loose samples still contained 57% myrcene. It was beyond this point in the storage test which —acid stability in the compressed group should have been demonstrably superior due to the lower concentration of catalytic myrcene. The absorption curves of petroleum ether extracts of both baled and loose samples indicated extensive degredation of —acid (Table 2). Conductometric analysis of the final sample (318 days) indicated that the loose samples may have contained more —acid than the baled samples (contrary to the hypothesis). These data only add support to the conclusion reached last year. (AR 62, p. 55).

One additional sampling was made on the Fuggle series at 251 days of storage at 68-70°F. (Table 3). As with the Brewers Gold experiments, this last date only supported the conclusions of last year (AR 62, p. 59).

Examination of 13 year-old hop oil samples:

Samples of Brewers Gold and Late Cluster hop oils which had been in glass ampoules at 38°F. and -5°F., alternately, since 1950 1/ were opened and examined. Both were found to be in excellent condition from the standpoints of color, viscosity, absence of precipitated materials. The Brewers Gold sample was not as good as a 1963 sample with which it was compared, but the Late Cluster oil was of superior aromatic character to a 1963 sample.

Samples of each were subjected to gas chromatographic separation on a 27 foot, 3% Silicone SE.90: Alkaterge: Carbowax 20-M (3:1:1) packed column and found to have nearly identical characteristics with 1963 samples with which they were compared. (Figure 1)

^{1/} Samples sent to Mr. D. E. Bullis in 1952 by Mr. R. G. Wright. Both were from ripe, dried samples.

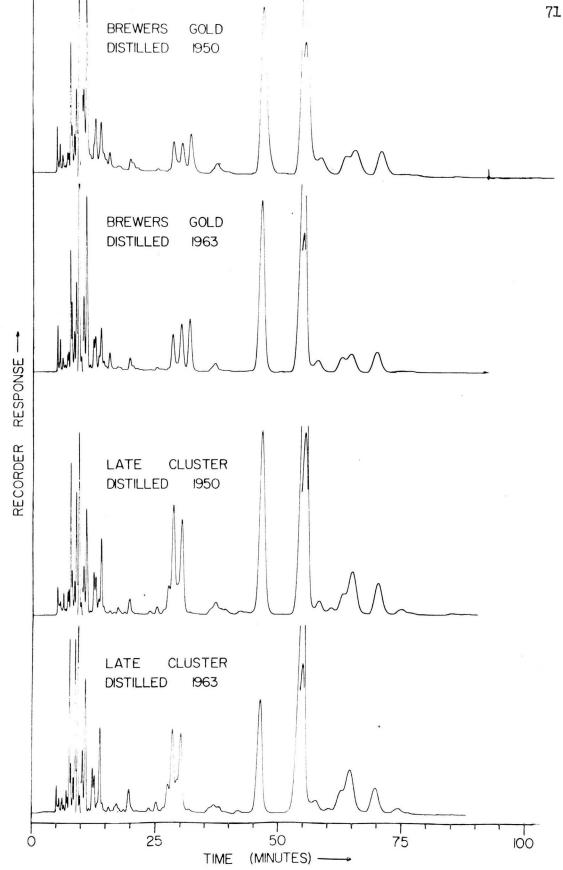


Figure 1. Comparison of fresh (1963) hop oil samples with samples distilled in 1950 and stored (sealed) 13 years. (1/8 " x 27", 3% Si SE 90, Alkaterge, Carbowax 20-M, 3:1:1 on 60/80 Chromosorb P, 144°C.)

Even the myrcene content appears to be very nearly that of the 1963 sample, indicating a complete lack of polymerization. In addition, there is no evidence of auto oxidation or molecular rearrangement of the hydrocarbon sesquiterpenes.

The particular column upon which these were separated is new and has not been evaluated with all markers, so that identification of only a few components is possible. The important point, however, is that no apparent change in the quality of the oil has taken place in 13 years storage.

Table 1. Detailed composition of oil from Brewers Gold storage tests of 1962 (see Table 2, p. 53, 1962 AR)

			-	oose						aled		
Days	Total	Myr.	Hum.	3-cary.	MNK	Other	Total	Myr.	Hum.	3-cary.	MNK	Other
						2 12				-		
251	1.07	•358	• 166	•055	.027	•464	0.65	•086	.137	•036	.019	·371
318	0.56	·17/1	•093	•033	•025	. 265	0.37	•028	. 047	.017	•015	•266

-	∝ -acid	(%) 1/	3-acid	(%) 1/	Oil content(ml/loog) 2		
Days	Loose	baled	Loose	baled	Loose	baled	
251 318	2.2 3.4(6.4) <u>3</u> /	3•7 2•4(5•5) <u>3</u> /	2.6 1.0	1.4 0.6	1.07(0.36) 0.56(0.14)	0.65(0.09) 0.37(0.03)	

^{1/} Spectrophotometric analysis for \propto and β -acids considered unreliable at 160 days and later on basis that A275 exceeds 1/2 of A325. At 251 days spectral absorbtion curve hardly recognizable.

2/ Numbers in parenthesis are myrcene content of the hops.

3/ Conductometric analyses.

Table 3. Effect of compression on the storageability of Fuggle hops. (see Tables 6 and 7, p. 57 1962 AR).

		(%)	3-acid	(%)		Oil content(ml/100g) Total Myrcene			
Days	loose	baled	loose	baled	-	baled		baled	
Hand-pi 261	3•7	3•5	1.5	1.3	1.06	0.42	0.48	0.11	
Machine 261	-picked:	3.0	1.5	1.1	0.93	0.56	0.38	0.11	

AC-2 (USBA 8) CHARACTERIZATION OF EXPERIMENTAL HOP LINES BY CHEMICAL ANALYSES.

Objectives:

- 1. Characterization of parental stock.
- 2. Evaluation of crossing methods for maintenance or improvement of quality characteristics.
- 3. Quality evaluation of lines submitted for Brewers! inspection.
- 4. Extent of contribution of other bittering agents as the need arises.
- 5. Complete characterization of lines reaching off-station testing.

For further comment on objectives, duration, reasons, etc. of this work plan, see AR 1961, pp. 51-2 or "Progress Report to USBA" dated Nov.1, 1961.

Summary:

No new work was carried on towards characterization of parental material, however, plans for 1964 include collection and analysis of both male and female lines used as parental stock.

No new work was carried out on crossing methods in 1963, but plans for 1964 may include preliminary work on the heritability of hop oil characteristics by oil analysis of males and females with the intent of finding lines with exceptional oil characteristics which could be used for accentuating results of crosses.

Brewers' inspection samples were analyzed for ∞ -acid, β -acid and oil content. Oil samples from all lines were subjected to detailed analysis, but in the absence of sufficient correlation between oil composition and brewing quality, no conclusions were made from these data. In view of the results of investigation into the amount of hop oil which enters the brewing process (see AC-3), it would appear that the hydrocarbon fraction should be ignored, and special attention given to analysis of these lines for their oxygenated components. This will be considered for 1964.

No work has been carried out on other bittering agents in hops, but a report by Dr. L. R. Bishop (ASBC 1964) reminds us that this is a practical aspect of hop chemistry which should not be ignored.

The only off station tests carried out this year were 3 samples of commercially-grown O-11 for Dr. R. R. Romanko (See AC 5).

Results:

Most work this year was done on experimental lines in the Observation Block (Brewers Inspection Samples). Table 5 lists the chemical quality features of each of the selections, and Table 6 provides detailed analyses of the oil from each selection. The actual chromatographs of each oil are included in this report under CRe5-1

Since many of these lines will be discontinued in 1964, either as discards, or because of being placed in the yield trial, a four-year summary of ∞ -acid and oil content is presented in table 4.

Table 4. Four-year summary of ~-acid and oil content of genotypes submitted for brewers' inspection in 1963.

Genotype	19 ~ acid	060 0il	19 ≪ac id	061 0il	19 ~- acid	062 oil	19 «- acid	63 <u>oil</u>	Disposi- tion
OB 801 812 813 822 826 827 829 830 831 833 835 835 841 842 843 844 844 845	9.2 9.4 7.6	0.45 1.29 0.54 0.58	8.2 5.8 6.3 7.2 6.3 6.6 6.6 6.3 5.8 7.4 4.9 4.8	0.49 1.92 1.19 2.32 1.64 0.62 0.81 1.43 0.51 1.12 0.90 0.40	9.3 8.6 8.6 * * * * * * * 6.6 * 6.6	1.12 0.35 2.24 * * * * 1.68 1.17 * 0.89 1.16 1.10	10.3 4.2 9.0 6.7 10.4 8.2 4.8 7.1 8.0 4.9 7.1 3.7 7.3 6.3 4.9	0.67 0.64 1.82 1.19 2.44 1.18 0.98 0.72 1.45 0.44 0.88 0.93 1.45 0.75 1.16 1.04 0.61	? D YT YT D D YT S D YT E64 664 664
128-I 114-I 15-S** I-I L-8 E-2 E-21 O-11**	12.6 7.3 6.2 5.9 7.1 5.4	2.10 0.81 0.40 0.23 0.36	6.1 4.3 6.6 5.4 5.5	0.5¼ 0.20 0.22 0.30 0.38	10.9 6.0 6.0 9.5 7.8 7.3 10.5	2.12 0.28 0.48 0.69 0.59 0.60 1.71	13.4 4.8 6.6 8.9 9.7 9.2 9.2	2.53 1.21 0.29 0.81 0.75 0.98 0.97 1.19	? WN ? WN WN WN WN

D = Discard; YT = Yield Trial; BB = Breeding Block: WN = Washington

^{* =} Accidentally destroyed in 1962.

^{**} Not submitted to brewers in 1963.

Table 5. USBA Inspection Samples, 1963.

Code	Selection	m.c.	∝acid1/	3-acid1/	011 ² /	Myrcene ² /	Other 2/ components	СоН
6310 6302	OB 801 OB 813 OB 822	9.45 9.65 8.85	10.27 8.99 6.25	5.82 6.79 1.19	0.66 1.82 0.709	0.414 1.103 0.481	0.246 0.717	•74 •47
6303 6308 6304	OB 826 OB 827 OB 830	9.10 9.65 9.25	10.42 8.17 7.08	5.15 3.38 3.39	2.44 1.18 0.72	1.762 0.707 0.307	0.678 0.473 0.413	•32 •37
6311 6305	OB 831 OB 833 OB 835	10.35 8.25 8.60	8.03 4.87 7.12	4.73 3.86 2.32	1.45 0.44 0.88	0.931 0.227 0.502	0.519 0.213 0.378	.76
6306 6313 6307	OB 839 OB 840 OB 841	9.25 9.75 9.40	3.71 5.68 3.67	4.60 4.73 3.19	0.93 1.45 0.84	0.473 0.941 0.403	0.457 0.509 0.437	
6317 6314 6315	OB 843 OB 844	10.50 8.95 10.00	4.67 7.58 6.30	5.11 3.37 3.32	0.75 1.16 1.04	0.462 0.471 0.504	0.288 0.689 0.536	
6316 6301	OB 845 15-S O-11 B	9.65 9.90 9.05	4.94 6.65 9.52	4.13 5.68 4.43	0.61 0.29 1.19	0.427 0.096 0.751	0.183 0.194 0.439	<u></u>
	L-1 L-8 E-2	7.35 6.85 7.85	8.90 9.70 9.18	4.96 5.34 4.72	0.81 0.75 0.98	0.370	0.380	•47 •48 •49
6318 6319	E-21 128-I 11/1-I	7.65 10.85 11.50	9.19 13.45 4.83	4.65 4.26 3.90	0.97 2.53 1.21	1.359 0.633	1.171	.45 .31 .20
6312 6309	OB 812 OB 829	8.40	4.21 4.72	2.514 5.25	0.64 0.98	0.360 0.587	0 . 279 0 . 393	

Modified Spectro. method: 5g ground hops ext. with 100 ml toluene; 2 ml aliquot made to 10 ml with p.e., a 3 ml aliquot evaporated and residue made to 100 ml with alk. MeOH.

^{2/} Oil, myrcene and other components expressed as ml./100g. D.M.

Table 6. USBA Inspection Samples, 1963 - Oil content and composition

% Composition 2/ % B-cary. % MNK % Others Selection % myr. Oil % hum. 0.66 OB 801. 62.7 9.7 3.5 1.7 22.4 OB 813 1.82 60.6 13.0 4.4 20.9 1.1 OB 826 2.44 72.2 22.9 2.4 1.2 1.3 OB 830 0.72 42.7 2.7 12.2 6.I 36.2 8.9 3.2 OB 831 1.45 64.2 22.7 0.9 OB 835 0.88 57.1 9.6 4.6 0.5 28.1 50.9 OB 839 0.93 12.1 5.4 1.0 30.6 59.9 1.18 OB 827 9.5 3.8 0.7 26.0 0.44 6.3 OB 833 35.8 51.5 3**•**5 2.9 ОВ 8110 24.3 1.45 64.9 6.6 3.3 0.9 OB 841 0.84 48.0 3.1 44.0 0.7 4.1 7.8 24.9 OB 842 0.75 61.6 4.4 1.3 1.16 14.3 OB 843 40.6 1.5 39.2 4.3 OB 845 8.5 0.61 70.0 0.4 19.4 15-S 0.29 33.3 3.3 6.0 51.9 0-11 Batt. 1.19 63.1 3.3 2.4 25.8 L-8 0.75 49.3 11.4 3**.**6 30.9 4.7 128-I 2.53 53.7 14.7 1.3 25.6 4.7 1.21 52.3 THI-I 21.2 6.2 1.0 19.3 56.3 OB 812 5.5 0.64 3.0 1.3 33.9 5.5 OB 822 13.3 1.19 59.6 1.9 19.7 OB 829 0.98 59.9 12.1 3.4 23.3 1.3

^{1/} Oil content, expressed as ml.oil/100g. D.M.

^{2/} Composition determined by gas chromatography: 1 /1 sample 1/8" x 25' BDS on 60/80 mesh chromosorb "P" + 2' Fore column, 28 psi N₂, HF detector (15 psi H₂/7.5 psi Air), attenuation 50 x 10².

AC-3 (USBA 23) ISOLATION OF HOP VOLATILES FROM BREWING PRODUCTS.

Objectives:

The object of this work plan is to develop a method for the isolation and determination of hop volatiles in beer in a manner which would be suitable for verifying their presence both qualitatively and quantitatively.

Duration, reasons, etc.

See AR 1962, pp. 69-70.

Most emphasis this year was placed on this work-plan with the result that the immediate objective of establishing a method for qualitative and quantitative estimation of major hop oil constituents in brewing products was accomplished.

Preliminary trials with a specially constructed simultaneous distillation-extraction unit definitely revealed the presence of several hop oil constituents in hopped wort, but was not satisfactory from the quantitative standpoint.

Based on these tests, and including refinements and using quantitative techniques, a method was developed which would isolate and estimate major hop oil components in wort and beer with a maximum sensitivity of about 2 ppb. each. This was believed to be more sensitive than organoleptic evaluation and therefore adequate for evaluating flavor characteristics.

Using this method lh ppb. methyl dec-h-enoate, 3 ppb. undecanone-2, 13 ppb. methyl dec-h, 8-dienoate, and 3 ppb. humulene were found in wort. None of these remained in detectable amounts after fermentation and storage. This was verified by examination of 7 other retail beers. One other beer, however, was found to contain over 1000 ppb. hydrocarbons, hop oil constiuents and 42 ppb. oxygenated hop oil components. This was the only one of the 9 samples which had an unmistakable hop aroma.

A sample of heavily hopped ale was examined before hopping, after hopping and after fermentation. It was found to contain over 170 ppb. hop oil constituents in the wort, but only humulene (25 ppb.) and /3-caryophyllene (1.3 ppb.) were detectable after fermentation.

The fact that essentially no hydrocarbons were found to be transferred to wort/that none were detectable in most beer, lead to the conclusion that this group of hop oil components are of little consequence in the development of new varieties.

Results:

I. PRELIMINARY TESTS:

Distillation and recovery system

Shortcomings of the Wright-Connery trap (Fig. 1-A) for recovery of steam-distilled hop volatiles were:

- L. Partition occurred at the pentane: aqueous-alcohol interface at the bottom of the pentane layer. Components with any degree of affinity for the aqueous-alcohol phase had no opportunity to accumulate in the pentane.
- 2. All partition had to occur at a relatively small surface which would presumably require long distillation times before equilibrium could be reached.
- 3. The system was open to air and losses of polymerizable terpenes could be expected.

A new distillation unit was designed and built to overcome these difficulties (Fig. 1-B). This unit continually replenishes the pentane phase from the pentane reservoir to prevent its saturation by any component. This system also greatly increases the surface area of the interface by distributing it over the lower surface of the condenser. The third objection to the Wright-Connery unit is overcome by using a closed system and purging the system with N_2 until distillation begins, thus preventing contact with air. This unit was used for all data reported here.

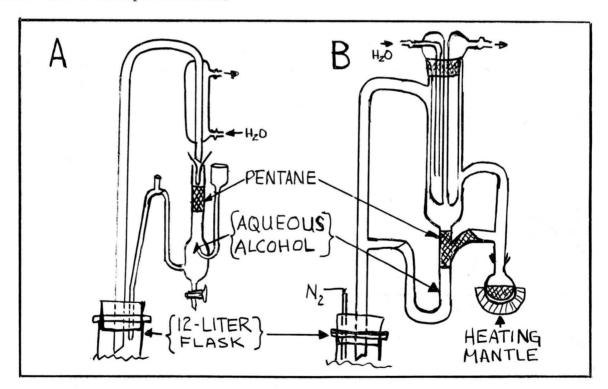


Figure 1. Comparison of the Wright-Connery trap (A) and the double recycling unit (B).

Recovery from artificial media.

Hop oil was added to various artificial systems and recoveries were calculated by determining the ratio of integrator counts per component which was added to the number of counts recovered. This method obviates errors arising from volatility and puts each component on an individual basis.

Seven ppm. hop oil were recovered from: (1) neutral water, (2) neutral 3.5% ethanol, (3) acidified (pH 4.5) 3.5% ethanol and 2 ppm. hop oil were recovered from (4) acidified (pH 4.5) 3.5% ethanol and from (5) acidified (pH 4.5) then neutralized (pH 7) 3.5% ethanol. Data obtained from this series is recorded in Table 7.

It was evident from the tests with 7 ppm. hop oil that the presence of alcohol did not influence recovery appreciably, but the low pH definitely reduced recovery. The second set of recoveries was run at 2 ppm. hop oil to determine if a certain proportion or a fixed amount of oil was lost during recovery. In acid media terpene recovery was low (as with 7 ppm.) but after acid was neutralized, recoveries were similar to those at 7 ppm. neutral. This indicated that 60 to 70% recovery of hop volatiles could be expected from beer provided it was neutralized prior to isolation.

It must be pointed out that 2 ppm. hop oil represents lower concentrations of each of the components, e.g., MNK at 3% in the oil would be 0.06 ppm. in the system.

Table 7. Hop oil recoveries from artificial systems in 1% of the component added.

		7 ppm	/		2 ppm
Component	Neut.	Neut.	Acid ² /	Acid	Acid-Neut3/
	HOH	ETOH!	ETOH	ETOH	ETOH
Myrcene Humulene 3-Caryophyllene Methylnonylketone others	16	22,24	13	14	8
	80	66,74	50	38	62
	75	64,56	41	140	52
	64	72,61	37	89	69
	56	71,79	48	82	67

1/ 3.5% ethanol in 7 liters. Complete isolation made in duplicate. 2/ Acidified to pH 4.5 with acetic acid.

Acidified to pH 4.5 then neutralized with ammonium hydroxide.

In general, recoveries have indicated that more loss is associated with the low boiling components than with the sesquiterpenes. However, the chromatographic process is more sensitive to the early emerging compounds, and as a result, a relatively uniform sensitivity of the isolation process exists throughout the spectrum of components. It is believed that 5 to 15 ppb. of a component in the system could be detected by this method.

317

Examination of wort

Hopped and unhopped wort samples were distilled and steam-distillable, pentane-soluble material collected. Gas chromatograms of the isolates (Figure 2) indicate the presence of several components of hop oil. Most of these are oxygenated compounds emerging between myrcene and 3-caryophyllene as well as one peak at 20.6 minutes (also oxygenated). The presence of MNK is indicated at 20-50 ppb. in the wort. (Calculation of the peak at 12.6 minutes indicates 30 ppb. in wort). Neither 3-caryophyllene nor humulene appeared at detectable levels, which again would be in the range of 10-30 ppb.

A second set of wort samples was obtained and to one portion of the unhopped wort was added 2 ppm. hop oil. Isolates from the unhopped wort, hopped wort and unhopped wort plus 2 ppm. hop oil were collected and chromatographed (Figure 3). The chromatogram from hopped wort indicates the presence of several components which are absent in unhopped wort. The chromatogram of unhopped wort plus hop oil clearly shows the presence of methylnonylketone at about 0.05 ppm. (50 ppb.) in the wort and an oxygenated component of hop oil origin at 11.7 minutes. These are consistent with the first wort analyses.

Also consistent with the first set is the small amount of /3-cary-ophyllene and humulene (if any) which can be recognized in the hopped wort.

/3-caryophyllene was added at the rate of 0.10 ppm and the resulting peak contains approximately 10 times the area of the peak in hopped wort, suggesting that, if it is present, it is in the range of 0.01 ppm. (10 ppb.). Humulene was added at the rate of 0.30 ppm. and the resulting peak is 12 times that of hopped wort. It appears that nearly half that peak arises from malt and therefore the concentration of humulene in hopped wort must not exceed 0.08 ppm. (80 ppb.).

Examination of beer.

A sample of beer obtained just prior to bottling was analyzed and found to contain less hop oil than was detectable by the method. Two additional retail samples supported this finding (Figure 4).

Discussion of preliminary tests.

These tests indicate the potential of the method as being sensitive to a few ppb. The difficulties up to this point are:

- 1. Lack of reproducibility both of distillation and chromatography.
- 2. Incomplete resolution of chromatogrammed peaks.
- 3. Lack of definite quantitative character.
- II. REFINEMENT AND EVALUATION OF METHOD.

Several changes were made in technique to improve the general method used for the preliminary tests:

1. Size of the pentane reservoir in distillation-extraction unit was reduced from 50 ml. to 5 ml. to avoid loss during evaporation of solvent.

- 2. Instead of removing nearly all solvent and trying to measure the amount of residue, the pentane extract was concentrated to 250 pl. This established a quantitative character and further protected from loss of solvent.
- 3. All analyses were completed (including G.C.) within 12 hours.
- 4. Gas chromatographic column was fitted with a replaceable forecolumn to prevent excessive change in column characteristics.
- 5. Separation into oxygenated and hydrocarbon fractions helped G.C. resolutions.

Details of methods:

Details of methods, including scale drawing of distillation-extraction unit, sample collection, sample preparation, distillation rates, solvent purification, silicic acid separation, handling of concentrates, chromatography, and calculation methods, are listed in the appendix of this report.

Model systems.

A series of buffered systems was tested to determine the optimum pH range for recovery of hop oil from dilute aqueous systems after initiating improvements in technique. The results (Table 8) indicated pH 5.8 to 6.6 yielded the best recoveries. On the basis of these tests, all later tests were carried out at pH 6.0 to 6.4.

One hour distillation gave slightly better recoveries than 2 hours (Table 9) but it was felt that the longer period might give more uniform results with wort and beer which contain much higher boiling components.

Up to this point all recoveries were made from systems containing 2 ppm. — approximately one—third the concentration of hop oil that would generally be available to wort during hopping. Preliminary trials with water in which hops had been boiled, indicated that, to be useful, the method had to be sensitive to 10% or less of the amount of oil available to wort (AR 1961). Recoveries from a system containing 0.5 ppm. oil were lower than for 2 ppm., but were adequate for estimating within a few percent the amount of each component present in the system (Table 10). Chromatograms for the 0.5 ppm. recovery are reproduced (figure 5) to illustrate the uniformity of recovery over the range of components.

Examination of wort from an experimental brew.

Unhopped wort was subjected to distillation-extraction and a gas chromatogram of the resulting concentrate indicated the number and location of components derived from malt and adjuncts (figure 6). The chromatogram of hopped wort indicated that 4 components were acquired in significant amounts during hopping (peaks 4, 6, 7 and 8). When 0.5 ppm hop oil was

Addition of hops containing 0.5% oil at the rate of 0.31 lb./bbl. makes 6 ppm. oil available to the wort.

added to unhopped wort and a concentrate prepared, certain components in its chromatogram were easily distinguishable and coincided with peaks 4, 5, 6, 7, 8, 9, and 11 of hop oil and peaks 4, 6, 7, and 8 of hopped wort.

Silicic acid chromatography of the hopped wort concentrate indicated peaks 4, 6 and 7 were entirely oxygenated and peak 8 was hydrocarbon.

Peak 4 of the hopped wort, is therefore demonstrated to be methyl dec-4-enoate; peak 6 is undecanone-2; peak 7 is methyl dec-4,8-dienoate, but contains a contribution of about 10% from unhopped wort; peak 8 is entirely hydrocarbon and has the retention time of humulene. No hydrocarbon was found in hopped wort with the retention time of /3-caryophyllene (peak 5), or farnesene (peak 10), nor of the oxygenated components represented by peak 11. A component with the retention time of myrcene was found to the extent of 6 ppb. in the hydrocarbon fraction of hopped wort, and its identity was considered uncertain.

Ten percent of the available methyl dec-4-enoate, 10% of the available undecanone-2, 15% of the available methyl dec-4,8-dienoate, and 0.6% of the available humulene were found to be extracted and retained by the wort.

One wort sample was held in storage at 35°F. for 9 days and compared with a fresh wort sample (figure 7). The hop oil content of wort was found to be quite stable under these conditions, and consistent between the 2 batches.

Examination of beer from an experimental brew.

When beer from the same source as the wort samples was examined for the presence of hop oil, it was found that components 4, 6, and 7 had disappeared and component 8 was obscured by fermentation products (figure 8). Silicic acid fractionation of the beer concentrate disclosed the presence of a hydrocarbon component corresponding to humulene (peak 8) at less than 1 ppb. in the original beer sample.

Recovery of 0.5 ppm. added hop oil from a second aliquot of beer (figure 8) verified that the distillation-extraction technique was satisfactory for demonstration of the quantities of hop oil components which had been anticipated. Fractionation into hydrocarbon and oxygenated groups indicated that all hop oil components from 4 through 11 were quantitatively identifiable.

The absence of hop oil constituents (except possibly peak 8) in either the whole concentrate from beer, or its hydrocarbon and oxygenated fractions demonstrated that hop oil components 4 through 11 were either absent prior to fermentation or were lost or transformed furing fermentation and storage. A summary of the analyses before fermentation and after storage is given in Table 11.

Examination of retail beers and ales.

Concentrates were prepared from 9 beers and ales representing a cross-section of domestic and imported products. The isohumulone content and aromatic properties of these brews indicated a broad range of hopping conditions (Table 12).

Of these, only sample 4 yielded a concentrate whose chromatogram showed the presence of detectable quantities of hop oil (figure 9). Separation on silicic acid revealed at least 6 hydrocarbons and 6 oxygenated components whose retention times matched hop oil components. A complete list of components found and estimated concentrations is given in Table 13.

The first 2 retail brands examined were the local brands illustrated in figure 4. Sample No. 3 was the experimental brew used in developmental work and the remainder were bottled retail beers and ales. Sample No. 9 was the retail counterpart of the experimental brew. A summary of chromatograms of each are illustrated in Figure 10. Their oxygenated and hydrocarbon fractions are given in figures 11 and 12. After examination of sample No. 4, a new chromatographic column was built and its characteristics were slightly different. As the column aged, the typical performance was reappearing with complete resolution of the peaks between 25 and 32 minutes and the peaks at 70 minutes.

Discussion:

About 80 percent of the oil available to the experimental brew was in the form of the hydrocarbons myrcene, 3-caryophyllene, humulene and a small group with retention times similar to farnesene. Of these, myrcene may have occurred to the extent of 6 ppb. in wort but was absent in beer. Humulene was present to the extent of 3 ppb. in wort and possibly 1 ppb. in beer. All others were below detectable levels (2 to 6 ppb.). According to Howard and Stevens something in excess of 1000 ppb. total hydrocarbons is required for a flavor contribution to an unhopped beer containing 29 ppm. added isohumulone. It is highly improbable that hop oil hydrocarbons made a flavor contribution to this particular brew even considering the lower isohumulone content of 10 ppm.

About 7 percent of the oil available to the brew was in the form of the oxygenated components methyl dec-4-enoate, undecanone-2, methyl dec-4,8-dienoate, an unidentified component with the retention time of humulene, and 3 higher boiling components. Of these, only the first 4 were transferred from hops to wort in detectable quantities, and totaled 30 ppb. All were lost or transformed during fermentation. Howard and Stevens state that 300 ppb. oxygenated components are necessary for flavor detection. It must, therefore, be concluded that there is little likelihood that these major oxygenated components of hop oil (in their original form) exerted a detectable influence on the flavor of the unfinished beer.

The fact that 7 out of 8 additional beers and ales examined did not contain detectable quantities of major hop oil components, verifies that the experimental brew was not unique, and suggests that the conclusions may be generally applicable.

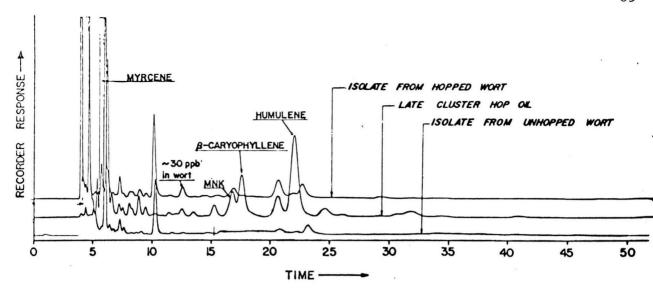


Figure 2. The presence of hop oil constituents in hopped wort (top) is indicated by the absence of many peaks in unhopped wort (bottom). The middle trace (hop oil) serves as a "standard" by which the hop oil components can be located.

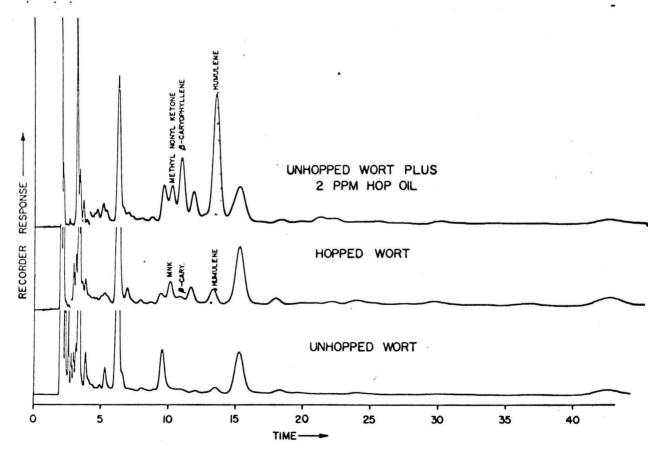


Figure 3. Addition of 2 ppm. hop oil to unhopped wort provides an estimate of the sensitivity of the isolation method and shows the presence of certain hop oil components in hopped wort.

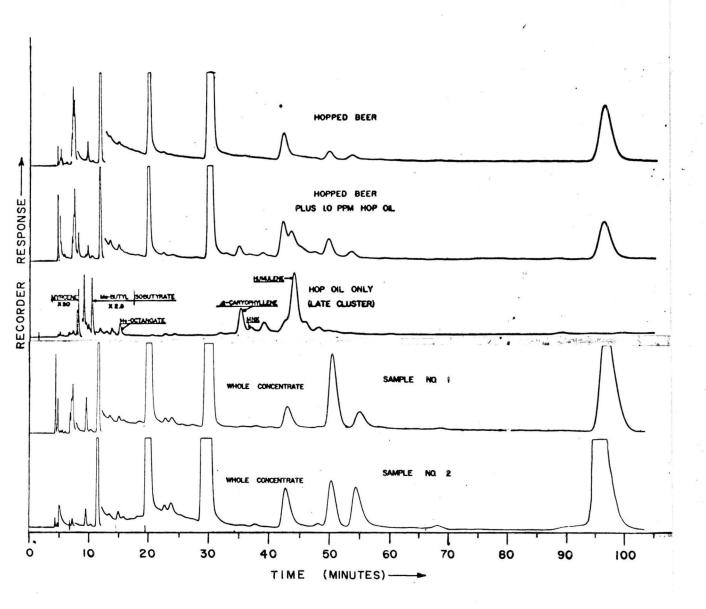


Figure 4. Absence of hop oil constituents in experimental beer (top) is indicated by recovery of hop oil components from "spiked" sample of beer. Samples no. 1 and 2 (bottom) are concentrates prepared from local retail brands, also indicating absence of hop oil components.

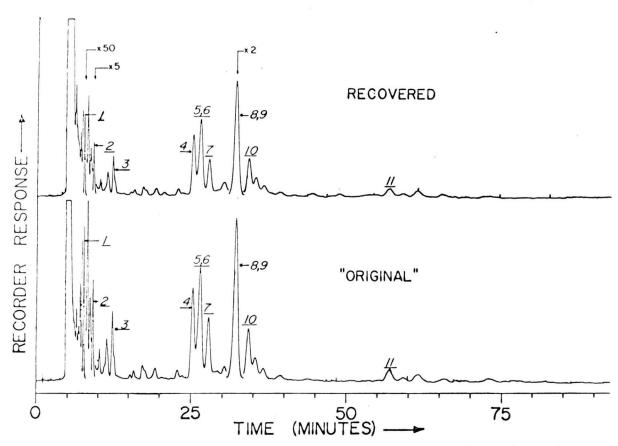


Figure 5. Gas chromatograms of concentrates from unhopped and hopped worts show the increase in components during hopping. Chromatograms of a concentrate from unhopped wort + 0.5 ppm. hop oil indicate the added components arise from hop oil. Chromatogram of hop oil shows which hop oil components are involved. See text for identification of peak numbers.

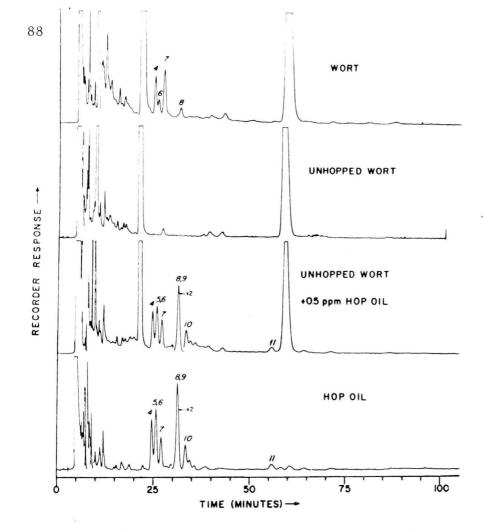


Figure 6. Gas chromatogram of hop oil recovered from a model system containing 0.5 ppm. oil. Comparison with "original" oil indicates uniformity of recovery over the spectrum of components. See text for identification of peak numbers.

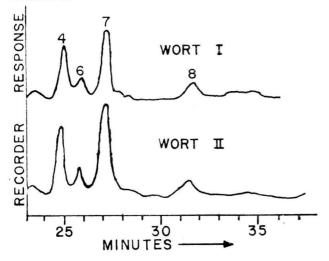


Figure 7. Gas chromatograms of concentrates from fresh (I) and aged hopped (II) worts. The 2 samples represent 2 separate brews. See text for identification of peak numbers.

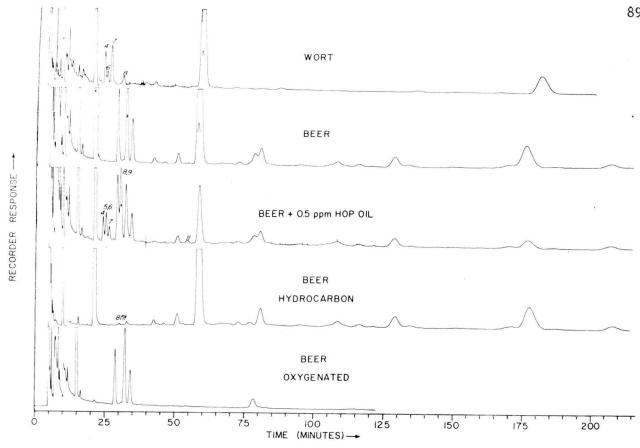


Figure 8. Series of chromatograms indicating the loss of certain hop oil constituents during fermentation (peaks 4, 6, and 7). Peak 8 is obscured in the concentrate from beer, but its possible presence is shown in the hydrocarbon fraction. See text for identification of peak numbers.

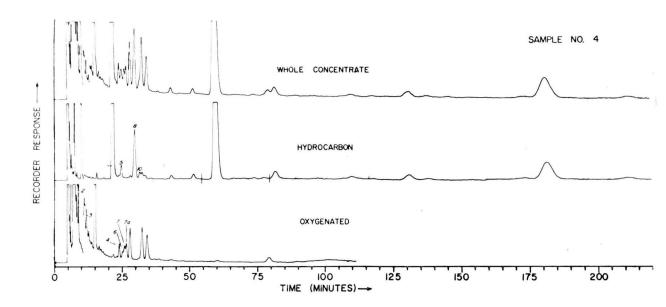


Figure 9. Gas chromatograms of concentrate from retail sample 4 and its hydrocarbon and oxygenated fractions. Peak numbers refer to hop oil constituents. See table 6 for instructions.

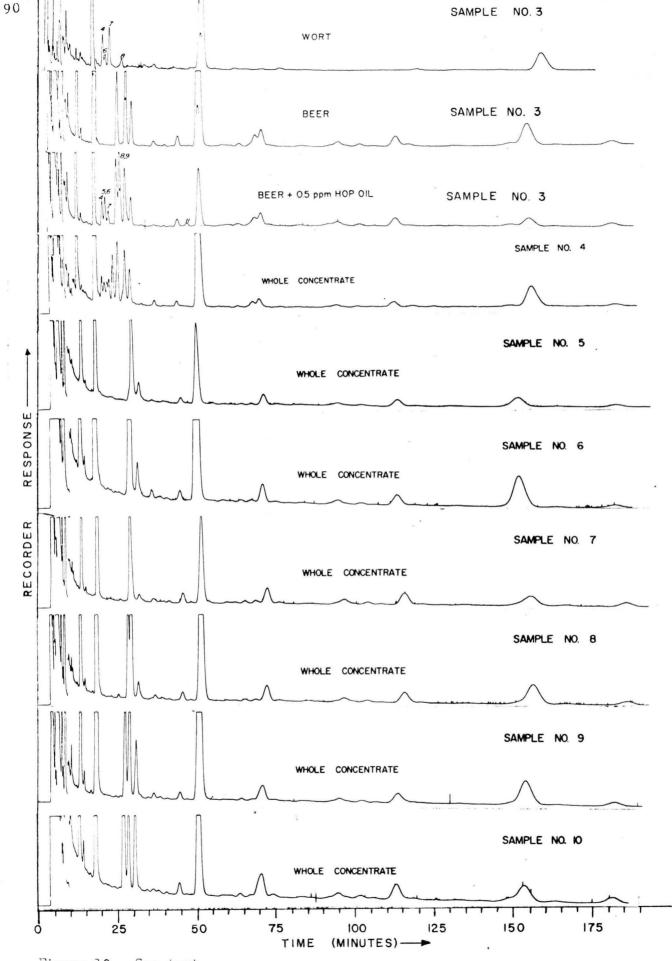


Figure 10. See text.

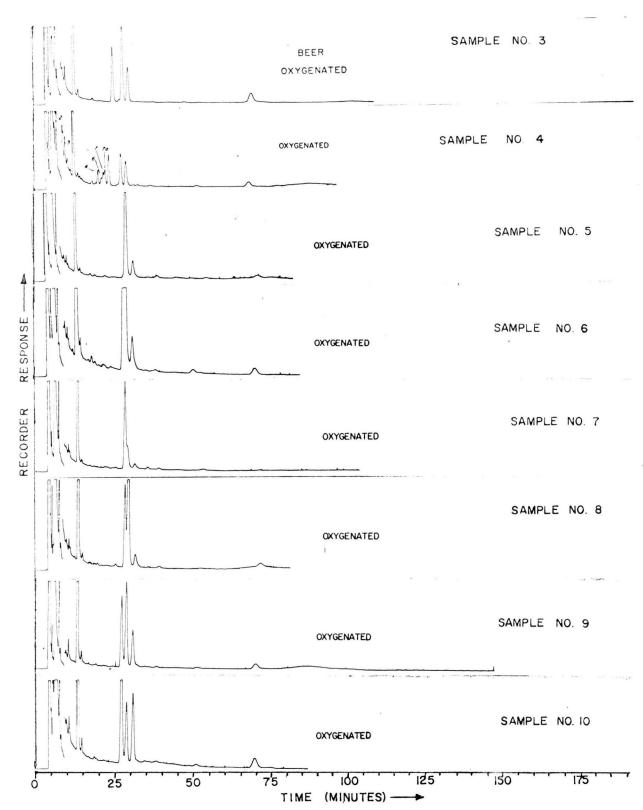


Figure 11. See text.

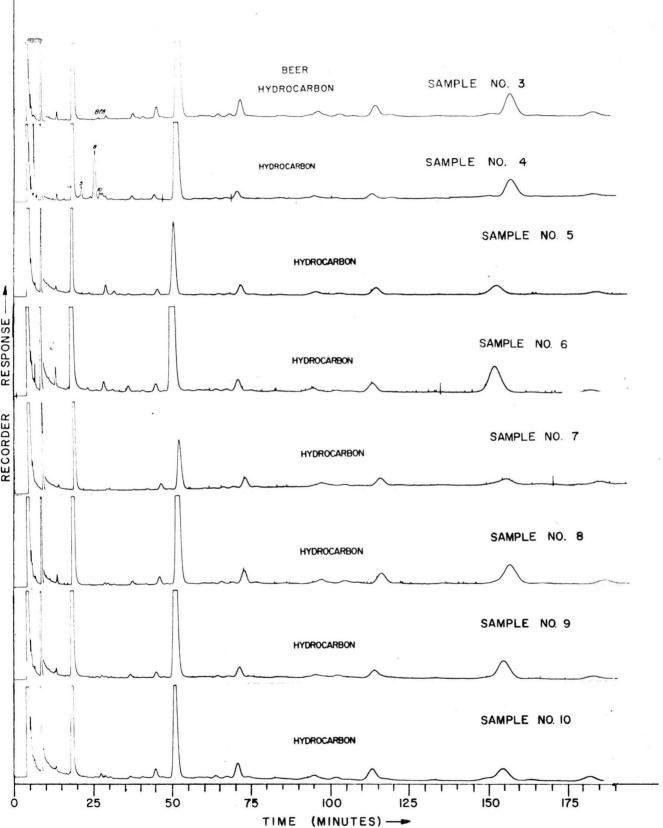


Figure 12. See text.

The analytical results of retail sample number 4 brings several points into focus: First, the method satisfactorily isolated and estimated major hop oil components when they were present. Second, since in excess of 1000 ppb. hydrocarbon and 42 ppb. oxygenated components were present, Howard's conditions for flavor contributions were met. Third, this brew had an unmistakable hop aroma.

It should be borne in mind, however, that the "major hop oil components" referred to in this report (Table 8) is but one of three possible flavor-contributing groups of the essential oil of hops. Remaining to be evaluated are a low-boiling fraction which escapes during isolation by steam distillation, and a fraction which is isolated by steam distillation but which is non-volatile and escapes detection by gas-chromatographic analysis.

Table 8. Effect of pH on recovery of hop oil from model systems when added at the rate of 2 ppm. \Box

Peak		Rate added		Perser	nt reco	rored	
number	component	(ppb.)	рН 5.0			pH 7.2	pH 7.8
1	myrcene	1268	80	87	87	71	81
2	methyl butyl isobutyrate	72	84	90	90	78	78
3	methyl octanoate	16	75	82	86	77	68
14	methyl dec-4-enoate	54	87	90	92	88	72
5,6	3-caryophyllene + undecanone-2	56	83	95	99	89	95
7	methyl dec-4,8-dienoate	34	76	74	83	81	62
8,9	humulene + oxygenated component	228	96	and con	97	91	92
10	hydrocarbon with retention time of farmesene	n 36	88	97	88	94	94
11	oxygenated sesquiterpene	8	100	86	100	86	86
7/ 000	Average		85	88	91	84	81

^{1/} One hr. distillation-extraction.

Table 9. Effect of distillation-extraction time on recovery of 2 ppm hop oil from model system.

Peak number 1	Percent relation	2 hr.3/
1. 2 3 4 5,6 7 8,9 10	87 90 814 91 97 78 97 92 93	73 74 77 87 85 83 87 87
Average	90	83

See Table 8 for key to peak numbers and rate added.

Average of 5.8 pH and 6.6 pH from Table 1.

Average of duplicate determinations.

Table 10. Recovery of 0.5 ppm. hop oil from model system.

Peak number 1/	Rate added (ppb.)	Percent recovered
1.	317	56
3	14 71:	59 60
5	17)	69 70
7	8	62
8 9	51) 6)	72
10	8	77 67

^{1/} See Table 8 for identification of peak numbers.

Table 11. Estimated quantities of hop oil components found in experimental wort and beer.

Component	Peak number	Minimum detectable (ppb.)	Found in wort (ppb.)	Found in beer (ppb.)
myrcene	- Cal	6 (?)	6 (?)	not found
2-methylbutyl isobutyrate and methyl ocanoate.	2,3	not determined	no t determined	not determined
methyl dec-4-enoate	4	3	J)†	not found
3-caryophyllene	5	3	not found	not found
undecanone=2	6	2	3	not found
methyl dec-4,8-dienoate	7	3	13	not found
humulene	8	2	3	1 (?)
oxygenated component with retention time of humulene	9	5	not found	not found
hydrocarbons group represente by farmesene	d 10	3-5 each	not found	not found
oxygenated group represented by peak number 11		2 each	not found	not found

Table 12. Properties of retail beer and ale (including domestic and imported brands) for hop oil content.

Sample number 1/	Hop aroma 2/	I.B.U. 3/	Hop oil components found
Control 4 5 6 7 8 Control 10	perceptible doubtful doubtful strong perceptible perceptible medium doubtful doubtful mild	13.0 15.6 17.3 18.5 17.7 13.7 18.5 10.5 23.0	None 11 12 components (Table 6) None 11 1 ppb. peak 7 (?) None 11

^{2/} Sample numbers are in the order of analysis date. One sample was rerun to establish no change in the performance of the method during the period of analysis.

^{2/} Judgement of 3 laboratory personnel

^{3/} Isohumulones Bitterness Units (1).

Table 13. Detailed analysis of retail sample No. 4.

Peak No.	Component	ppb. uncorrected	A Company of the Comp
1 2 3 4 5 6 7 7 8 10÷	myrcene methylbutyl isobutyrate methyl ocanoate methyl dec-4-enoate 3-caryophyllene undecanone-2 methyl dec-4,8-dienoate unidentified oxy. 2/ humulene 3 post-humulene hydroc. incl. farnesene oxy. sesquiterpenes Total hydrocarbons found	540 present 5 8 19 3 7 8 45 15 absent	970 present 8 12 27 14 10 8* 63 19 absent
	Total oxygenated found		>42

Corrected according to recoveries in Table 3.

^{2/} Origin uncertain but occurs in some varieties of hops.

AC-L INVESTIGATIONS INTO ANALYTICAL METHODS.

Objectives:

To evaluate, modify, or extend analytical methods as may be necessary to accomplish the overall objectives of CRe5-5.

Reasons, duration, etc:

See AR 1959, p. 113.

Summary:

Unacceptable variation in the spectrophotometric analysis of dried, ground hops for ∞ -acid was traced to inadequate mixing of the sample after grinding, and no improvement was noted with a 5.0 gram sample when compared to the routine 2.5 gram sample.

Sampling hop yards for determination of ∞ -acid was investigated and it was learned that the ∞ -acid content may rise slightly towards evening, but during a period of one day the ∞ -acid is surprisingly constant. Regarding required sample size, it was determined that a single field sample of 1000 grams is reliable; a single subsample for ∞ -acid is reliable; a single titration is reliable; but subsampling for ∞ -acid must be immediate after picking and bracketed by duplicate moisture samples.

After subsamples for moisture and α -acid are taken from a field sample, the α -acid content is stable for a period of 12 hours if kept cool (17-25°C.).

Results:

Laboratory Error in ~-acid Analysis.

Review of re-run data from 1962 samples indicated appreciable lab. error was present in X-acid analysis. Examination of the samples indicated poor reproducibility may be associated with high moisture content which tended to result in "pelleted" samples upon grinding, which gave poorly mixed samples.

An experiment was run to test M.C. and uniform mixing. 2.5 g. samples, 100 ml. pet. ether, 1 ml. to 100 ml. alk.MeOH, spectro.

Sample*	Condition	1 %	∝acid 2	3	Mean	Range
88 – 62	Coarse - hi M.C.	6.3	5.6	5.9	5.9	0.7
89 – 62		4.0	4.0	2.9	3.6	1.1
218 - 62	Uniform, normal M.C.	5.0	5.4	4.8	5.0	0•2
219 - 62		4.9	1.6	4.2	3.6	3•3 ?
196-62	Uniform, re-mixed	6.3	6.4	6.1	6.3	0.2
201-62		3.6.	3.6	4.0	3.7	0.4
202-62		6.0	5.7	6.2	6.0	0.4
208-62		2.0	1.7	1.5	1.7	0.4

This led to the belief that mixing before sampling had been inadequate. As a check, sample 88-62 was thoroughly mixed and 9 analyses run. The average of the 9 was 5.8 with a range of 0.7, which indicated superior results. While improvement was noted, more variation was present than is considered permissible. An experiment was run to determine if a larger sample would improve results.

		9	α -acid			
Sample	Sample size	1	2	3	Mean	Range
79 – 62	2.5 g. 5.0 g.	7.2 7.0	6.6 7.9	7.4 7.8	7.1 7.5	0.8
105-62	2.5 g. 5.0 g.	5•3 5•2	5.2 5.4	5.4 5.2	5•3 5•3	0.2 0.2

If mixing had still been inadequate, a 5.0 g. sample would have improved reproducibility. Since the larger sample indicated no improvement, it followed that the difficulties were in the part of the determination which followed sampling. Therefore 4 successive aliquots of the same extracts were prepared and the results were:

Aliquot No.	% ~-acid	
1	5.2	
2	5.4	range = 0.2
3	5.4	
4	5.2	

It was concluded that better results could be anticipated next year if samples were more thoroughly mixed after grinding and more care given to aliquoting, using double dilution if necessary.

Source of Variation in Field Sampling for Maturity Curves of ~acid.

Maturity curves for following the accumulation of α -acid are notoriously erratic. There have been many speculations regarding the source of the variation, but no reliable data.

The purpose of this experiment was to determine the source of variation and determine the sample sizes or sampling methods necessary to correct the situation.

The method was to collect field samples (FS) in duplicate at 3 times (Ti) during the day. Three subsamples (SS) were taken from each field sample. After extraction, 2 aliquots (Al) were taken from each subsample for α -acid analysis. Statistical analysis was applied to determine which sampling step contributed significantly to the overall variability.

Details of procedure:

3 sections (6 x 100 hills each) of a 100 A.Bullion yard were sampled simultaneously by 2 sample-collectors from the bottom 6 ft. of the vines at 8:30 A.M. on 8/17/63. Collected about 1000 g. for each field sample.

Samples were taken immediately to the lab. in plastic bags. From field sample 1 was taken 110 g. for moisture; 3 subsamples of 100 g. each for α -acid, and a second 100 g. for a duplicate moisture determination. (Note moisture samples taken on each side of α -acid samples.) Moisture samples were toluene distilled for M.C.

Each 100 g. α -acid sample was extracted with 400 ml. toluene 10 min. in Waring blendor, allowed to settle 3-5 min. while cooling (extraction cup in pan of ∞ ol, running water). About 60 ml. was decanted into a bottle containing 15 g. Na₂SO₁, stoppered and shaken 2 minutes to remove water.

2 aliquots of 20 ml. each were removed from each extract and titrated conductometrically with 4.38% lead acetate.

Calculation of X-acid was:

After first field sample had been analyzed, moisture, ∞ -acid subsamples, moisture samples were taken from the second field sample. After all samples from the first collection time (8:30 A.M.) had been analyzed, a second pair of field samples were collected (1:00 P.M.) and handled in the same manner. A third pair of field samples were collected at 8:30 P.M. and treated the same as the first two times.

In the analysis of variance, field samples were considered randomizedblock because of time of standing while awaiting analysis. The same applies to subsamples and aliquots, so there was a continuous "Ageing" occurring from the first titration (aliquot) within a time through the last titration within a time.

Analysis of variance indicated the major source of variation was in field samples (Tables 11, and 15), and that the second field sample contained less \propto -acid than the first by about 5% (or 0.1% \propto -acid). This, in turn suggests that during the time lapse between picking and analysis, \propto -acid degenerates. This cannot be since such a trend would show up in the subsamples but does not. The only operation in which time-lapse is directly connected with field samples is the moisture determination.

If the idea of ~-acid deterioration with time is rejected on the basis of no difference in subsamples, one is led to believe that the moisture determination, in some way, over corrects when calculating to a dry basis.

The conclusions from this experiment are:

- 1. ~-acid content may rise slightly in late afternoon or early evening.
- 2. Erratic maturity curves must result from day-to-day variation.
- 3. A single field sample is adequate, but must be analyzed promptly -- especially for moisture (with ≪-acid subsample weighed out at same time.

- 4. A single subsample is reliable ($C_{\bullet}V_{\bullet} < O_{\bullet}5\%$).
- 5. A single titration (aliquot) is reliable. ($C_{\bullet}V_{\bullet} < 0.5\%$)

Table 14. Source of variation in Field Sampling for ≪-acid

Source of variation	$D_{\bullet}F_{\bullet}$	<u>s.s.</u>	$M_{\bullet}S_{\bullet}$	F
Main plots: Times of sampling Runs (FS) Error a (Ti x FS)	2 1 2	1.185 2.778 0.057	0•5925 2•7780 0•0285	20•8 * 97•5 **
	5	4.020		
Sub plots: Subsamples Subs x Times Subs x Runs (FS) Error b (Sub x Time x FS)	2 1 ₄ 2 1 ₄	0.102 0.133 0.410 0.955	0.0510 0.0332 0.2050 0.2388	=
	12	1.600		
Sub-sub plots: Duplicates Error c	1	0.040 0.390	0.01400 0.022 9	1.75 N.S.
	18	0.430		
Total	35	6.050		

Table 15. Data for Field Sampling Variation Experiment, Aug. 17, 1963. % ~acid, dry basis.

	9:30	AM	4:00	PM	8:30	PM	
SS	FS 1	FS 2	FS 1	FS 2	FS 1	FS 2	
1 al 1 2	12.2 12.5	11.7 12.0	12.2 12.4	11.7 12.0	13.2 13.6	11.7 11.9	
T(Ti x FS x SS)	24.7	23.7	24.6	23•7	26.8	23.6	147.1
2 al 1 2	12.2 12.1	11.9 11.6	12.4 12.3	11.9 12.0	12.4 12.5	12.2 12.2	
T(Ti x FS x SS)	24.3	23.5	24.7	23.9	24.9	24.4	145.7
3 al 1 2	12.5 12.1	11.7 11.6	12.4 12.4	11.7 11.9	12.4 12.5	12.3 12.3	
$T(Ti \times FS \times SS)$	24.6	23•3	24.8	23.6	24.9	24.6	145.8
T(Ti x FS)	73.6	70.5	74.1	71.2	76.6	72.6	
T(Ti)	•ולוני	1	145.	3	149.	2	438.6 GT

Table 16. Field Sample x Sub sample interaction

SS	FS 1	FS 2	T(SSxTi)	T(SS)
1	24.7 24.6 26.8	23•7 23•7 23•6	48.4 48.3 50.4	
T(FS x SS)	76.1	71.0		147.1
2	24.3 24.7 24.9	23.5 23.9 24.4	47.8 48.6 49.3	
T(FS x SS)	73.9	71.8		145.7
3	24.6 24.8 24.9	23.3 23.6 24.6	47•9 48•4 49•5	
$T(FS \times SS)$	74•3	71.5		145.8
T(FS)	224.3	214.3	438.6	438.6
Total aliquots	21		•3	

Demonstration of -acid Stability in Green Hops.

Results of the previous experiment indicated a certain degree of ∞ -acid stability in green hops between the time of sampling and analysis. It seemed desirable to know the extent of this stability.

The purpose of this experiment was to determine the length of time which was permissible between the time of sampling and the time of analysis, and the temperature requirements, if any.

The procedure was to take a field sample at 7:30 P.M. (8/19/63) subsample for moisture, 6 %-acid samples, and a second moisture, in that order. The samples were held for 2 "ageing" periods at 2 temperatures and analyzed for %-acid by the conductometric method.

Table 17. Effect of "ageing" and temperature on -acid content (% D.B.) of green (undried Bullion hops).

	/· \	Temper	ature
Time (hr.)	17-250	2°C,	
0		11.7	11.4
3		11.3	11.4
12		11.6	11.5

The results indicate that, providing moisture samples are taken immediately, the X-acid content of green (undried) hops is stable for a period of at least 12 hours and that cool room temperature is satisfactory (refrigeration is not required).

AC-5 SERVICE WORK FOR COOPERATIVE AGROMOMIC AND BREEDING TRIALS.

Objectives:

To detect any changes in hop quality, as assessed by chemical analysis, brought about by agronomic variables, and to make chemical quality evaluations of experimental lines from other research stations.

Reasons, duration, etc.:

See A.R. 1959.

Summary:

OSU, 5h samples from Height of Trellis, 1963.

U of I, 13 samples from 1962 maturity for N-content, 6 samples from N fertility trial for quality and N content, 11 experimental lines for quality, 1 sample for cohumulone and oil composition.

U of W, 17 experimental lines for quality, 4 samples for cohumulone, 1 sample for oil composition.

Results:

Height of Trellis (OSU)

54 samples were collected, dried, and analyzed for moisture, ~ -acid, /3-acid (spectrophotometric) and oil content (Wright-Connery).
These are included with the full report under CRe5-4, this report.

Nitrogen Fertility on Late Cluster (U of I)

The maturity data for Idaho Late Cluster from 1962 (1962 AR, pp. 78, 79) were completed with analysis for Kjeldahl nitrogen.

Table 18. Nitrogen content (in % N) of IDAHO Late Cluster maturity study of 1962.

		N Applica	tion Rate	
Coll. date	120 N	160 N	200 N	240 N
8/17 8/22 8/27 8/29 9/3 9/5 9/10	2.97 2.83 2.93 3.07 2.79 2.60 2.56	3.12 2.96 2.89 2.83 2.83 3.19 2.81	3.30 3.00 3.09 3.04 2.91 2.72 2.83	3.15 2.91 3.08 3.82 2.49 2.78 2.70
9/12 9/19 9/24 9/26 10/1 10/3	2.61 2.42 1.99 1.99 2.09 1.76	2.61 2.41 2.56 2.17	2.63 2.57 2.29 2.31 2.08 1.99	2.50 2.35 2.11 2.04 2.05 1.87

Six samples of Late Cluster from R. R. Romanko of the Univ. of Idaho were analyzed for chemical quality and for Kjeldahl-nitrogen with the following results:

Table 19. Chemical data on IDAHO N-fertility trial.

N-rate(#/A)	Plot	M.C.	Ml.oil/ 100 g.	≪- acid(%)	3-acid(%)	N (%)
80	B	6.50 6.40	0.70 0.69	10 .03 8 . 52	5.41 5.45	2.27 2.46
160	A	6.50	0.59	8•9 7	5.45	2•37
	F	6.25	0.69	9•29	5 .17	2•37
2 <u>1</u> 0	C	6.85	0.64	8•110	5.67	2•34
	E	6.25	0.69	8•111	5.54	2•32

Evaluation of Experimental Lines (U of I)

Ten Early Cluster selections and l_i experimental lines were analyzed for Dr. Romanko of the Univ. of Idaho.

Table 20. Chemical evaluation of IDAHO experimental lines.

Sample	M.C. (%)	Oil (ml/100g)		<u> </u>
EC-1 EC-2 EC-3 EC-4 EC-5 EC-6 EC-7 EC-8 EC-9 EC-10 O-3 O-11-B	6.00 6.05 6.05 5.95 6.00 6.40 6.35 6.40 6.35 6.85 7.55	0.63 0.44 0.43 0.56 0.50 0.56 0.42 0.53 0.69 0.55 0.43 1.14 1.19	8.45 7.66 7.89 9.02 9.07 8.65 8.26 8.38 8.07 8.21 7.21	5.31 4.70 4.85 4.91 5.04 4.84 4.67 5.22 4.82 4.74 6.23 4.59
0-11-A	6.05	1.37	8.69	4.64

Genotype O-11-B was analyzed for cohumulone and oil composition:

cohumulone adhumulone humulone	48% }	Alpha	acid
myrcene	63%		
humulene	5%	Oil	
3-caryophyllene	3%	OTT	
others	29% J		

Evaluation of Experimental Lines (U of W):

Dr. C. B. Skotland of Univ. of Washington, sent 17 samples from his selection-evaluation trial for quality evaluation.

Table 21. Evaluation of WASHINGTON experimental lines. 1/

No.	Selection	Harvest Date	M.C. (%)	0il(ml/100g)	≪acid (%)	/3-acid (%)
22	E-1	8/27	7.05	0.87	9.88	4.70
14 31	E-2	8/27	7.00	0.54	8.10	4.69
31	15	9/4	7.85	0.98	9.18	4.72
26	E - 5	9/4	6.80	0.96	10.67	4.89
29	E-9	9/4	7.30	0.97	8-44	4.45
24	E-10	8/27	7.10	0.86	10.78	3.97
20	E-21	8/27	6.85	0.54	7.74	4.20
27	13	9/4	7.65	0.97	9.19	4.65
56	L-l	8/27	7.35	0.86	8.87	4.65
7171	13	9/4	7.35	0.81	8.90	4.96
144 53 42	L= 2	9/9	10.60	1.13	11.83	5•79
42	L-3	9/9	11.70	1.13	9.71	5.62
40	I=4	9/9	10.75	1.01	9•5 7	5•35
60	L - 8	9/9	6.85	0.75	9.70	5.34
37	L - 9	9/4	7.20	0.97	10.12	4.60
47	71	9/9	10.40	1.12	11.36	5•39
50	L-16	9/9	9.25	1.10	10.80	<u>5•35</u>

All <- and 3-acid analyses are averages of duplicate determinations by the spectrophotometric method.

In addition, those lines scheduled for brewers inspection were analyzed for cohumulone:

	CoH (%)
E-2	49
E-21	45
L-l	47
L-8	48

Oil analysis of L-8 was:

Total	0.75	ml./100	g.
myrcene	49%		
humulene	11%		
3-caryophyllene	5%		
others	35%		

AC-6 (USBA 20) INVESTIGATIONS INTO THE CAUSES OF COME BREAKAGE (SHATTER).

The emphasis of this line of work has shifted to one of plant physiology and the major responsibility has been transferred to C. E. Zimmermann. The detailed report of the 1963 work is entered in this A.R. under CRe5-4.

It is anticipated that Work Plan AC-6 will be given a new title in 1964, probably dealing with hop extracts.

AC-8 INFLUENCE OF HOPS ON FERMENTATION PRODUCTS

Objective:

To determine the extent to which hop extractives modify the products of yeast fermentations.

Duration, reasons, etc:

See A.R. 1962, pp. 84-85.

Summary:

No new work was done under this work plan during 1963. It is proposed to carry the work-plan title for one additional year, however, and continue the work outlined under "procedure" in the 1962 A.R. This is not considered high-priority work and continuance will depend largely upon availability of time.

AC-9 QUALITY CHANGES DURING DRYING AND BALING.

Objective:

To determine factors responsible for quality losses, especially oil content and composition, as they are associated with the production processes of drying and baling.

Duration, reasons, etc.

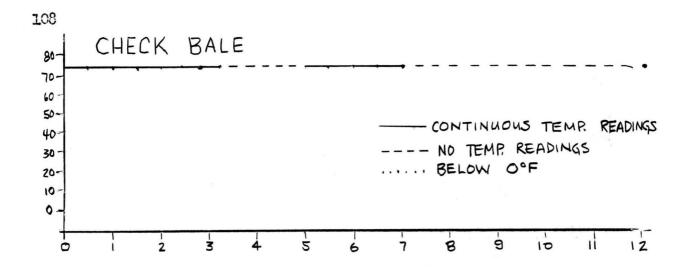
See AR 1961, p. 67

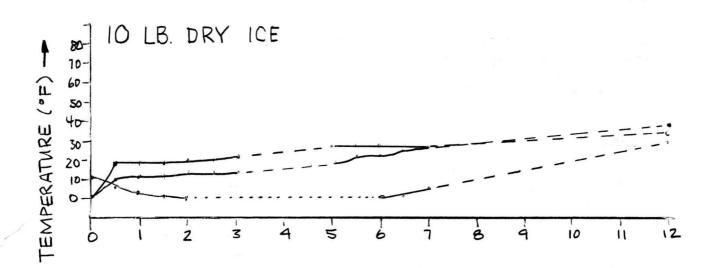
Summary:

Dry ice was added at the rate of 10 lb. and 20 lb. to 2 bales of Bullion hops and analyses for oil and \propto -acid were compared with a control bale (1) before baling, (2) 12 hours after baling and 36 hours after baling. No significant changes took place in the quality of any of the treatments up to this time. The bales were shipped by refrigerated rail to P. Ballantine's for sampling and analyses at a later date.

Procedure:

Three consecutive bales of Bullion hops from Ray Kerr's Farm were selected for this study. Each bale was sampled immediately prior to compression. The first bale was used as control.


Dry ice was crushed with a hammer to a maximum chunk size of about 1 inch diameter with the average being 1/4 to 1/2 inch. This was weighed and sprinkled by hand into the press as the hops were added.


After dry ice had been added to the second two bales, thermocouples were inserted to a depth of 9 to 10 inches into the centers of the bales at 2 locations for the check bale, and 3 locations (bottom, middle, and top) of each of the test bales.

Readings of each of the 8 thermocouples were taken each minute with a motorized rotary switch and recorded on a strip chart recorder. After 12 hours, the thermocouples were removed, samples were taken and the bales were moved directly to refrigerated ($0^{\circ}F_{\bullet}$) railroad cars. After 24 hours the bales were again sampled. They were then sent to P. Ballantines where they were transferred to frozen storage.

Results and discussion:

The cooling curves (figure 13) indicate that after about 8 hours, the bale receiving 10 lb. dry ice was beginning to warm, while 20 lb. dry ice held an additional 4 hours or longer. Although calculation indicates 10 lb. of dry ice should reduce the temperature of a bale of hops only about 10°F. the data suggests this quantity may freeze the bale temporarily. Twenty lb. of dry ice apparently freezes the bale and holds it in that condition for some time. (At points where dry ice fragments occurred near the surface, frost formed and was still evident after 12 hours.)

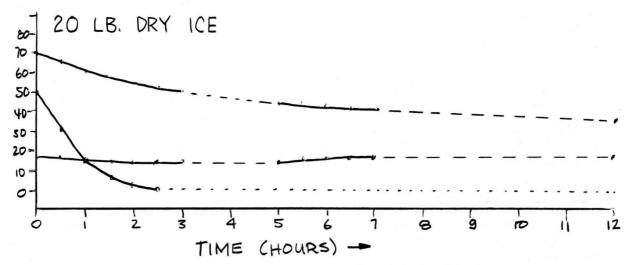


Figure 13. Cooling curves for dry-iced bales.

There are slightly over 10 moles of CO₂ per 1b., or 8 cu. ft. per 1b. Therefore, 10 lb. dry dry ice should furnish 80 cu. ft. and 20 lb. should furnish 160 cu. ft. of CO₂ with which to displace the air trapped in the bale during compression. A bale of hops is about 13.5 cu. ft., of which about 4.5 is solid and 9.0 is air. Therefore, 10 lb. dry ice furnishes about 10 volumes of CO₂ to the bale and 20 lb. furnishes 20 volumes. Either should be adequate to displace all, or nearly all, the air present in a bale.

Between the immediate effect of lowering the temperature and thus retarding reactions of degradation and the longer lasting effect of displacing the oxygen required for degradation, improved stability was anticipated.

However, analyses of loose, baled (12 hr.) and baled (36 hr.) showed no losses in any of the test bales including the check (Table 22). Samples of the stored bales are to be provided by P. Ballantine.

Table 22. A-acid and oil content of dry-iced bales.

Treatment	Time (hr)	Condition	Oil content (ml./100g.)	
Control	0	loose	3•94	13.8
	12	bale	3•78	13.4
	36	"	3•84	13.7
10 lb. dry ice	0 12 36	loose bale	3.88 3.86	13.0 13.8 13.5
20 lb. dry ice	0	loose	3•86	13•7
	12	bale	3•82	13•7
	3 6	b a le	3•92	13•5

MISCELLANEOUS --- PRELIMINARY WORK ON HOP EXTRACTS

1. Separation of G-acid from concentrated hop extract.

Extracted 75 g. 128-I (1963) with 800 ml. pet. ether in omnimixer. Filtered and concentrated to thick syrup.

Took 3 crops of /3-acid crystals (-5°F., 24 hr. each) and reduced /3-acid/ -acid ratio from 0.318 to 0.01.

Necessary to filter &-acid with vacuum and Gooch crucible with asbestos filter pad. Even this was very slow.

2. Separation of "hop wax" from 3-acid-free extract:

Dissolved extract in MeOH and held -5°F. 8 hr. (No additional ppt. after 24 hr. at -5°F) Filtered at -5°.

Residue was not waxy at room temperature, but was a green viscous liquid. It was not bitter, but had a very "grassy" taste.

128-I is seedless and may not have appreciable "hop wax".

After removal of methanol from filtrate, the acid-free, "wax"-free extract had a very pleasant, slightly estery aroma and was very bitter.

3. Hop oil in \(\mathred{B}\)-acid-free, "wax"-free extract:

The extract (4-6 ml) was diluted to 10 ml. with pet. ether to reduce viscosity. 5 ml were chromatographed on a 27 ft., 2% butanediol succinate column. A fairly typical curve resulted with the exception that the myrcene content was lows

myrcene 22% of the oil
MNK 2% " " "

3-caryophyllene 5% " " "

humulene 24% " " "

oil

4.3% of the extract

4. Removal of hydrocarbons from /3-acid-free, "wax"-free extract:

Two ml. of extract in pentane was added to a 1×22 cm. column of silicic acid and first eluted with 300 ml. pentane, then with ethyl ether.

After removal of solvent, the hydrocarbon fraction was yellow-orange and had a harsh bitter taste. The oxygenated fraction was green and was very bitter.

Each fraction was examined for oil and the separation was found to be complete, i.e., the hydrocarbon contained &-caryophyllene, myrcene (very little) and humulene, but no oxygenated components, while the oxygenated fraction was hydrocarbon-free.

APPENDIX

Cultural Practices

A cool wet spring during 1963 hampered spring field work and delayed plant growth, so that the last hops were trained on June 1st, which is approximately 2 weeks later than noted with an average season.

All plots received a fertilizer application in early spring, at the rate of 135 pounds of nitrogen and 75 pounds each of P_2O_5 and K_2O_{\bullet} Plots were pruned by the last of April.

The month of May had an ideal temperature-moisture condition for downy mildew infection. The 128-I hops, located at the Smith yard, produced primary "spikes" after pruning which were unsuitable for training. A propane flame was used to destroy the sporulating spikes and stimulate new shoot growth. This practice proved quite successful in control of mildew, and permitted crown buds to elongate which were not systemically infected. All hops were sprayed with 1000 ppm. streptomycin at 20 gallons per acre during the month of May when shoots were 8 to 10 inches in length. Hops located in the breeding mursery were not sprayed with streptomycin, nor were they stripped or suckered. Downy mildew was not a problem during the growing season, but favorable conditions in August caused the spread of infection to the hop cones. A dust application of a fungicide with tractor drawn equipment is often difficult due to dense vine growth late in the season. An aircraft was contracted to dust the hops with a zinc fungicide at a cost of less than \$4.00 per acre. The application cost was less than if applied by our own personnel.

High populations of cutworm larvae were reported in the State of Oregon and considerable damage was reported in different hop areas. Larvae present in the soil crawled up hop vines during darkness and chewed off leaves and developing hop cones. The experimental hop yard was dusted with Diazinon to control cutworm damage. One application of TEPP during June resulted in a fair control of hop aphids, but less than that obtained with Systox.

The hop yard located on the East Farm received 5 inches of irrigation water in late June, whereas the Smith yard received 2 applications of 5 inches each. The gasoline-driven irrigation pump on the Smith yard was replaced with an electric motor which required the installation of a power line. This electrical system was more efficient and required less man hours to operate than the old system.

All hops were harvested by machine during the period of August 22 to September 17.

N

Field Map of Hop Investigations, College East Farm

Fuggle for cooperative studies (Entomology)	Backeross and nursery block	Wild American	Breeding block
--	--------------------------------	---------------	-------------------

		Herbicide Fuggle		Male lines Observation block
Late Cluster GA3 study	Fuggle GA3 study	Rooting Study on Fuggle		
			Fuggle perme cover	
			trial	
			Disease	
			nursery	

Field Map of Hop Investigations, Smith Farm

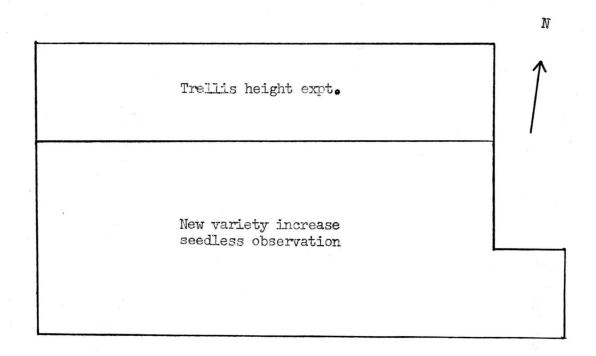


Table Seedlings in 1961 nursery (1960 crosses) at Corvallis to go into 1964 nursery at Prosser, Washington. (Rows 50-53 are BC material and rows 64-69 regular breeding material).

66-28* 66-38 66-39 66-40 66-40 66-48 66-51* 66-52 67-4 67-6 67-19 67-10 67-12 67-18 67-19 67-20 67-29 67-30 67-32* 67-37* 67-39 67-40 67-42 67-43* 67-448* 68-1 68-1 68-1 68-1 68-1 68-1 68-1 68-1	Cross Ol 06 06 07 21 1 1 R I R I R R R R R R R R R R R R R	Location 64-2 64-3 64-4 64-6 64-7 64-10 64-12* 64-19* 64-26 64-23 64-24 64-25 64-25 64-26 64-31 64-31 64-37 64-38 64-46 64-47 64-53 65-1 65-25 65-30 65-31 65-32 65-31 65-40 65-40 65-41 65-47 65-45 65-47	DM IRRERERERERERERERERERERERERERERERERERER	670 70 70 71 72 448 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Location 50-4* 1/ 50-4* 1/ 50-4* 2/ 50-10-50-12-50-15* 50-15* 50-15* 50-15* 50-15* 50-15* 50-15* 50-15* 50-15* 50-15* 50-15* 51-38 5
--	--	--	---	---	--

Good vigorous seedlings included regardless of mildew reaction.

1/ C61001 selected in 1963 for continuation at Corvallis.

2/ C61002 selected in 1963 for continuation at Corvallis.

3/ C61003 selected in 1963 for continuation at Corvallis.

1/ C61004 selected in 1963 for continuation at Corvallis.

5/ C61005 selected in 1963 for continuation at Corvallis.

6/ C59006 selected in 1960 for continuation at Corvallis.

1963 Report on New Hop Varieties at the Irrigation Experiment Station, Prosser, Washington

C. E. Nelson

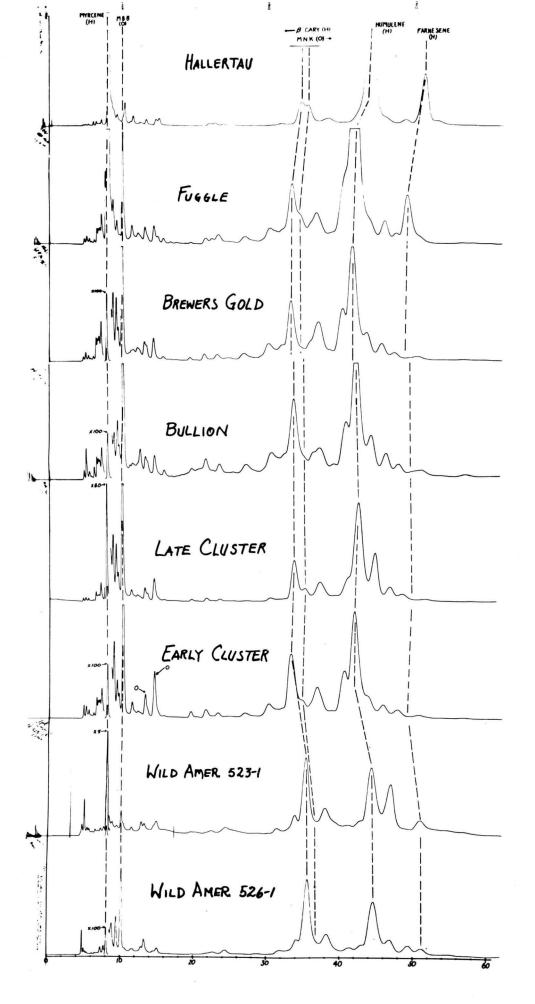
				C.	E.	Nelson		_		
No.	Vigor 0-9*	Cone size 0-9**	(1) Maturity	Aroma 0-9*		No.	Vigor 0-9*	Cone Size 0-9**	(1) Maturity	Aroma 0-9*
1/0B-830 1/59-2-42 1/59-3-8 1/59-3-41	3 2 3 3	3 3 5 6	M ME ME M	6 7 5 4		12-4 12-3 12-23 12-28	6 6 2	4 5 dama miss		6
1/59-4-10	2	2	ME	5		12-27	7	5	ME	4
1/59-4-11 1/59-4-31 1/59-6-1 13-32 13-36	4 2 2	6 5 4 miss 2	M M ME ing E	6 4 5		12-22 11-48 128I 524-5 WA 523-3 WA		5 7 5 miss miss	-	4 6 7
13-29 13-28 13-27 13-25 13-24	6 2 7	7 male 4 8 miss	E ML	4 5 5		523-4 WA 0B843 0B842 11-46 11-42		miss miss miss 5	ing ing	4 3
13-23 13-19 13-18 13-17 13-39	7 8 2	miss miss 9 5 2		5 6 3		11-40 11-32 0B840 11-26 11-16	3 5 6 4	miss 5 6 8	ing ML ME L L	6 4 5 4
13-42 13-43 13-44 13-45 13-49	7 6 6 7 3	7 6 4 5 4	E E M ME ML	6 3 4 6		525-4WA 10-51 10-47 11-11 11-4	7 8 3 6	7 miss 8 3 5	ME ing L M ME	5 6 5 4
13-34 13-10 13-9 13-8 13-6	1 3 4 3	Weak 2 2 miss	- few con ML ME M	es 5 2		11-1 10-45 10-43 10-41 10-40	5 5	7 7 weak weak 4		2 4
13-3 13-1 G20713 12-12 12-7	2 6 6 4 3	2 5 4 3 2	E ME ME M ME	4 6 3 4 6		10-38 10-37 10-33 10-32 10-28	4	miss niss miss miss	L ing ing	1

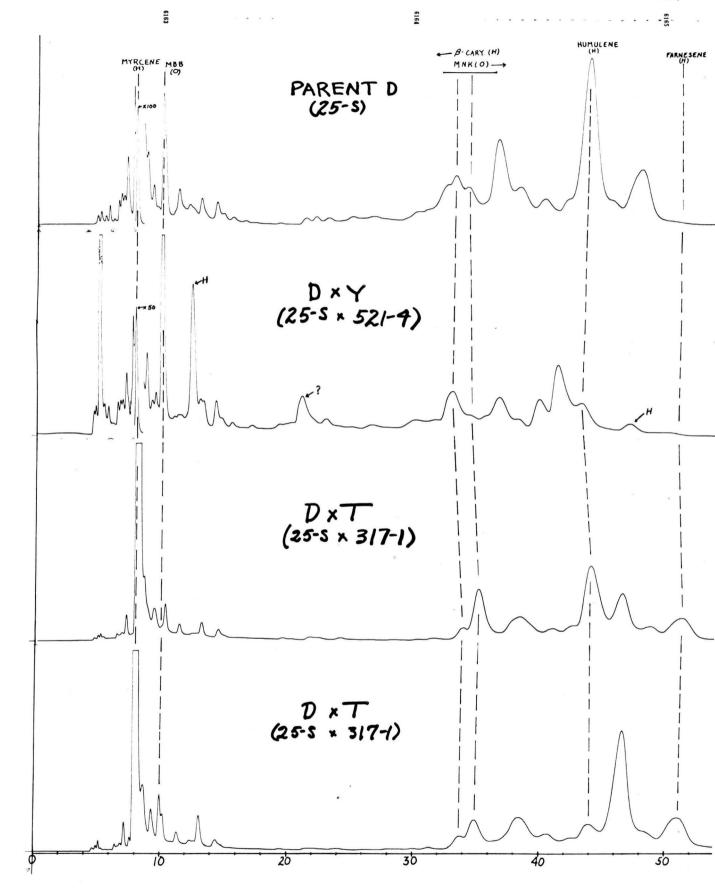
^{* 0 =} poor 9 = good ** 0 = small 9 = large

⁽¹⁾ E = early
M = medium

ME = medium early
ML = medium late

L = late


 $[\]underline{1}$ / Saved from 1961 planting at Prosser. All the rest were planted in 1962.


No.	Vigor s		l) urity	Aroma 0-9*	No.	, .	Vigor 0-9*	Cone size 0-9**	(1) Maturity	Aroma 0-9*
10-24 10-23 10-21 10-20 10-75	6 4 7	3 N	M ML L M	7 2 3 5	8-6 8-8 8-5 8-4 8-2		4 5 4 4	4 2 miss 2 2	E ME sing E E	2 2 2 2
10-11 10-10 10-6 10-5 10-4	8 4 4 4 inji	6 I	M L M L tle gr	3 3 2 5 owth						
8-51 8-46 10-3 10-2 10-1	3 4 4 5	missing 5 I	E E M M	4 2 2 3						
8-40 8-39 8-38 8-37 8-35	4 4 6	3 Missing	ME ME M	5 2 4						
8-33 8-29 8-26 8-25 8-21	4 5 7		E ME ML	2 2 3						
8=19 8=18 8=17 8=13 8=12	4 4	missing missing l	M M ME	2 3 2						

^{*=0=}poor 9=good **=0=small 9=large

⁽¹⁾ E = early
M = medium
L = late

ME = medium early
ML = medium late

Downy Mildew Ratings - Breeding Block - 1963

Row and	DM	Row and	DM	Row and	$_{ m DM}$
Hill No.	Reaction	Hill No.	Reaction	Hill No.	Reaction
101-2 101-3 201-3 301-1 201-3 301-1 401-2 401-2 401-3 401-2 401-3 401-5 402-3 402-1 402-3 402-1 402-3 402-3 402-3 402-3 403-3	RRRHRHRHRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	405-3 505-3 505-3 505-3 505-3 505-3 505-3 505-3 505-3 506-3 206-3 206-1 106-3 106-1 107-1 106-3 106-1 107-2 107-3 107-3 107-3 107-3 108-3 10	ISSSRRHILRSSRRRRRRRRRSIRIVVRILIRHRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	310-2 210-4 210-3 210-2 210-1 110-2 110-2 111-3 311-1 311-3 411-1 411-3 411-4 411-3 412-3 412-3 412-3 312-4 412-3 312-4 312-3 312-1 212-3 212-3 212-3 212-3 212-3 212-3 212-3 212-3 212-3 212-3 212-1 212-1 212-3 212-1 212-3 212-1 212-3 212-1 212-3 212-1 212-3 212-1 212-3 212-1 212-3 212-1 212-3 212-1 212-1 212-3 212-1	RIISRI SSRIRIRISSRRRRIRRRRRRRRRRRRRRRRR

Downy Mildew Ratings - Breeding Block - 1963 cont.

Row and Hill No•	DM Reaction	Row and Hill No•	DM Reaction	Row and Hill No	DM Reaction
314-3 314-1 214-3 214-3 214-2 114-3 115-1 215-2 315-1 315-2 315-3 415-1 416-5 416-1 316-3 416-1 216-3 216-1 216-2 216-1 216-2 216-1 217-3 217-1 217-5	SSSIRRRRRRRRSRRRSSSSSSRHRRRR	218-1 118-5 118-1 118-2 119-1 119-2 119-1 119-3 219-1 219-3 219-3 319-1 419-5 419-5 419-5 519-5 520-1 420-2 320-1 320-1	R R R I R R R R I V R S I R R R R S R R S S I I V V V V V V V V V V V V V V V V	522-5 522-4 522-3 522-2 522-1 122-5 1422-3 1422-3 1422-1 322-1 322-1 222-3 222-1 222-1 122-1	R RISSIIIIRRRRRRRRS
317-1 317-2 417-1 417-2 417-5 517-1 517-2	S S I R R R	220-5 220-14 220-1 120-5 120-2 120-1 121-2	I VS VS R VS VS I		
517-5 518-2 418-5 418-1 318-5 318-4 318-2 318-1 218-1	R R R R R R R S S	121-5 221-1 221-2 321-1 321-5 421-1 421-2 521-2 521-4 521-5 522-5	VS S S R R R R R		

Downy Mildew Ratings - Nurseries - 1963

		,	0-		
Row and Hill No.	DM Reaction	Row and Hill No•	DM Reaction	Row and Hill No.	DM Reaction
50 - 1 2 3 4 5 6	R R I I R	50 - 149 50 51 52 53	R R	51-42 43 44 45 46 47 48	R ma ma
7 8 10 11 12 13 1) ₁	R I R ? R R VS R	51- 1 2 3 4 5 6 7	R S R VS R	48 49 50 51 52 53 54	R R SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
123456789012345678901234567890123456789042345678 111111111111111111111111111111111111	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	51-1234567890112314567890122345678901233456789041	R ? VS R I I VS R R R R R R R R R R R R R R R R R R	52-1 23456789112131456171892021 2223245627282931 23233	SRIRS RI RRRRR R I VSS RR I RRRR VS

Downy Mildew Ratings -- Nurseries -- 1963 Cont.

Row and Hill No.	DM Reaction	Row and Hill No.	DM Reaction	Row and Hill No.	DM Reaction
52-34 336 378 390 442 444 445 445 455 555 555 53-12 53-12 53-12 53-14 56 78 90 112 34 56 78 90 112 34 56	R ? R I R R R R R R R R R R R R R R R R	53-26 27 28 29 31 33 33 33 33 33 33 33 33 33 34 56 7 51-2 51-2 51-2 51-2	S S S I S I	54-19 201 223 223 245 278 290 212 2345 267 289 290 212 21345 2145 2145 2145 2145 2145 2145 2145 21	VS R S VS VS VS VS VS VS VS VS VS R S R
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	R I R VS S R S R S	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	VS VS S S VS	55-1 2 3 4 5 6 7 8 9 10	S I VS VS

Downy Mildew Ratings - Nurseries - 1963 Cont.

Row and Hill No•	DM Reaction	Row and Hill No•	DM Re action	Row and Hill No.	DM Reaction
55 -1 2 13 14	VS VS VS	56 - 5 6 7	I	56 - 53 514	60 és shress
13 14 15 16 17 18	VS 	8 9 10 11	S estima mecan	57 - 1 2 3	R I
19 20 21	S I VS	12 13 14 15 16 17	R I 	4 5 6 7 8	I S VS I
22 23 24 25 26 27 28	VS S	18	I	9 1 0	I
29	VS VS 	19 20 21 22	R R R	11 12 13 14	I
30 31 32 33	R VS VS	23 24 25 26	R R R	15 16 17 18	R I S
30 31 32 33 34 35 36 37 38	S R	27 28 29 30	R R	19 20 21 22	VS
38 39 40 41 42	-	31 32 33 34 35 36 37	R R R	23 21 ₄ 25 26	S R
43	 	35 36 37 38	R VS I	27 ° 28 29	I
44 45 46 48 49 55 55 53		39 40 41	VS R	31 32 33	R
50 51 52		43 44 45	VS	35 36 37	S S R R
	 R	38 39 41 42 44 45 49 51 52	VS VS	30 31 32 33 34 35 36 37 38 39 40 41 42 43	VS R VS
56 - 1 2 3 4		50 51 52	R	42 43 44	R S R

Downy Mildew Ratings - Nurseries -- 1963 Cont.

Row and Hill No.	DM Reaction	Row and Hill No.	DM Reaction	Row and Hill No.	DM Reaction
57-45 46 47 48 49 50 51 52	R I VS R R R	64- 8 9 10 11 12 13 14 15 16 17 18	R R R R VS R S	65-1 2 3 456 7 8 9	R R I R I VS S S
23456789911234567	R VS S I I VS I R I	19 20 21 22 23 24 25 26 27 28 29 30 31	I R I R I VS VS	11 12 13 14 15 16 17 18 19 20 21 22 23	R R VS VS VS I S VS I
18 19 20 21 22 23	I S R R I VS	31 32 33 34 35 36 37 38 39 40 41 42 43	VS I I S I R R I I	24 25 26 27 28 29 30	IIIRIRRRRI
214 25 26 27 28 29 30 31 64-1 2 3 45 6	VS VS VS VS R R R R R	41 42 43 445 46 47 48 49 50 51 52 53	R R R R	31 32 33 34 35 37 38 39 41 42 44 44 45 48	R I I R R R R R R R R R R R R

Downy Mildew Ratings - Nurseries - 1963 Cont.

nowith, wirraet	w warthigs - N	urseries - 1	903 60116		
Row and Hill No.	DM Reaction	Row and Hill No.	DM Reaction	Row and Hill No.	DM Reaction
65 - 49 50 51 52	R R R	66-114 145 146 147 148	US VS R R	67 - 39 40 41 42 43 44	R R I R R
66- 1 2 3 4 5	R R R S S	49 50 51 52 	I R R	45 46 47 48	I S I VS
2 3 4 5 6 7 8 9 10 11	I I S	67 - 1 2 3 4 5 6 7 8	R R R I ?	49 50 51 52 	R
11 13 14 15 17 18 19 21 22 22 22 23 24 25 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	VS VS VS S VS(good f picture VS VS VS VS S I I I I I I I I I I	9 10 11 or 12	·?RRIS?SVRIIRR?VIRI VISIRSSVIVSRR	2 3 4 5 6 7 8 9 10 11 12 11 15 16 17 18 20 21 22 22 22 23 24 25 26 27 28 29 30 31 23 32 33 33 34 35 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	SIRRIRIR RIRIR RIVS SIVS

Downy Mildew Ratings - Nurseries - 1963

Cont.

Row and Hill No.	DM Reaction	Row and Hill No•	DM Reaction	Row and Hill No	DM Reaction
68-34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	VS V	69-5 67-8 9-10 11-12 13-14-15 16-17-18 19-20 21-22 23-24	VS VS VS R S S VS S VS S	69-29 30 31 32 33 34 35 37 38 39 40 41 42 43 445 46 48	I S VS VS VS VS VS VS
69 - 1 2 3 4	s s vs	25 26 27 28	s s	49 50 51 52	R R S

Downy Mildew Ratings -- Observation Block -- 1963

Line No.	DM rating	Line No.	DM rating	Line No.	DM rating
OB831-1 2 3 4 5 OB833-1 2 3 OB835-1	SRIRRRIRRR.	OB843-3 OB844-1 2 3 4 5 OB845-1 2 3 4	R R R R R I R R R	OB850-4 OB851-1 2 3 4 5 OB852-1 2 3	R R R R R R R
3 4 0B839 -1 2 3 4	I R S S S I R	OB846 -1 2 3 4 OB847 - 4	R R R R R R	0B854-1 0B855-1	R R R R R R
OB840-1 2 3 4 OB841-1 OB842-1 2 3	I I R R I R R	OB848-1 2 3 4 OB849-1 OB849-5 OB850-1 2	R R R R R R R	0B856-1 2 3 14 0B826-1 2 5	R R R R R R R

No readings were taken on the rest due to lack of foliage.

Downy Mildew Ratings -- Selections -- 1963

Selection No.	DM rating	Selection No.	DM rating	Selection No.	DM rating
No. 25-S 24-S 23-S 22-S 18-S 16-S 15-S 14-S 13-S 10-S 8-S 7-S 6-S 32-S 33-S	R VS I R VS S R R R R R R R R R R R R R R R R	No. 42-s 44-s 44-s 46-s 47-s 49-s 50-s 73-s 72-s 70-s 68-s 61-s 62-s 59-s	rating I I VS R I R R R I I I I I	No. 94-S 95-S 96-S Nales-124-S 123-S 119-S 117-S 116-S 113-S 110-S 108-S 131-S 134-S	rating RRSRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
34-S 35-S 36-S 39-S 40-S 41-S	R R S S	58-S 56-S 84-S 85-S 88-S 92-S	R R S R R	136-S 142-S 144-S 145-S 148-S 150-S	R R R R

Downy Mildew Rating - Male Lines - 1963

Plot and Line No.	DM rating	Plot and Line No.	DM rating	Plot and Line No.	DM rating
101 ML 2 3 4 5 6 7 8 9 0 112 134 15 6 7 8 9 0 112 134 15 6 7 8 9 0 112 134 15 6 7 8 9 2 11 12 134 15 6 17 18 9 20 112 134 15 6 17 18 9 20 112 134 15 16 17 18 9 20 112 134 15 16 17 18 9 20 112 134 15 16 17 18 19 10 18 18 18 18 18 18 18 18 18 18 18 18 18	RRRS R SRSRRSHRSHHRRHSRHSRRSHRHRSHHSSR	301 ML 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 1 1 5 6 7 8 9 ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RSRSRRHRR HRRHRSHRRUHRRUHRRHRRHSSRSRR S HRH	501 ML 2 3 4 5 6 7 8 9 510 12 13 14 15 16 17 18 19 520 ML	ISRRSHIHRRRISISRHIRR

Downy Mildew Rating - Wild American - 1962

Row and Hill No.	DM rating	Row and Hill No.	DM rating	Row and Hill No.	DM rating
523-1 2 4 523-5 524-4 524-1 524-1 525-1 526-5 526-3 73-3 56 7 8 9 112 135 16 17 18 20 12 21 22 22 22 22 22 23 24 24 24 24 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	R R R R R R R VS I VS I VS VS VS VS VS	73-23 24 25 26 27 73-28 72-28 27 26 27 26 27 28 27 20 19 18 17 16 15 11 10 9 7 6 5 4	VS IRRSVSSISIVVI VS RVSSVS VS VS VS VS VS VS VS VS VS VS VS V	72-3 2 72-1 71-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 21 22 23 24 25 71-26	SRRRRSSSVVS IIRVSISRVSVIR

Observations during machine picking of 6 varieties in Height of Trellis Trial, 1963.

C. E. Zimmermann

Fuggle HT

Machine picked Sept. 4. Picked with light shatter, some clusters and some light cones going over re-cleaner. Few hop cones left on picked vine.

THI I-MI

Machine picked Sept. 4. Hop picked with little if any shatter, without petioles or leaves and with very light cones which required reduced air on re-cleaner. Excellent picking hop. Terminal flowering branches had feathered cones also double and triple cone sets and this accounted for some high gram-force readings.

135-I HT

Machine picked Sept. 9. Hop picked with very light cone shatter, many sidearms broken off from brushy vine, many clusters in hops, and some lost through rear of machine. Vine picked clean of cones and nearly all leaves were detached during the operation.

Late Cluster HT

Machine picked on Sept. 13. Hop picked with light cone shatter, many clusters and leaf petioles mixed with harvested cones. Picked vine had an average number of cones still attached. There was an excess of 10% loss in cones due to sidearm breakage and large clusters, an additional 5% loss in light cones which had dried up on the vine. This variety when grown at this location produces a large number of secondary lateral branches bearing sterile male flowers. More seed was found in cones of other varieties at this location in 1963, the origin of the pollen is not known, but some of the L.C. male flowers could be shedding pollen. The anther and filament extended outward in a manner similar to fertile male flowers. It was difficult to observe a noticeable difference in pickability of varieties grown on 16, 18 or 20 ft. trellis heights, but an obvious difference was noted with Late Cluster. The large amount of vine growth at the trellis is a characteristic pattern of Late Cluster, but the density in top growth was reduced when grown on a 20 ft. trellis and these vines had less cone loss during picking than those grown at 16 ft.

128-I HT

Machine picked Sept. 17. Hop picked with very little cone shatter, a good clean pick except for the large number of leaf petioles with the picked cones. The picked vine had very few hops remaining and vine leaves were removed. A characteristic of 128-I picked vines is the cone petiole which has two base "stipular bracts" from the cone attached to its terminal end. The cone is actually detached by breaking the strig and not the cone petiole. About 1% of the cones were severely infected with downy mildew late in the season and the cones were too heavy to remove with the re-cleaner.

Brewers Gold HT

Harvested on Sept. 17. Hop picked with light shatter and clean hop cones except for a few clusters. Cones were light (open) and required less air on re-cleaner, approximately 1 to 2% "white" cones were lost over recleaner. Average amount left on vine, with all vine leaves still attached, but a few sidearm leaves were stripped.

Overall Pickability of Height of Trellis Trial (Seedless)

Observations on pickability obtained during machine harvest of experimental lines. 1963.

C. E. Zimmermann

OB 841 (Fair)

Machine picked Sept. 9. Hop picked with moderate shatter, comes being light and fluffy with some going over re-cleaner. There was only one hill of this variety but it had a heavy set and most of the comes were shaded. These shortcomings could possibly be eliminated if grown seedless. Pickability force 646 g.

OB 839 (Fair to poor)

Machine picked Sept. 9. Hop picked with moderate to heavy shatter, large cones and more than 50% of the cone set having two cones with one cone petiole. Many bare strigs on the picked vine. Pickability force 889 g. with 13 out of 20 over 1000 g. Double cones contributed to high pickability force requirement.

OB 845 (Very poor)

Machine picked Sept. 9. Hop picked with heavy cone shatter, very many clusters, and with bare strigs on the picked clusters. The picked vine had few whole cones, but had many bare strigs with every lateral terminal having a bare strig attached. The pickability of this variety was the most difficult ever experienced. Sterile male flowers were noted on all laterals along with cones. Pickability force 693 g.

OB 830 (Fair to poor)

Machine harvest Sept. 9. Hop picked with moderate to heavy shatter, picked cones being fluffy, most cones missing petals and some clusters, but less than OB 845. Many bare strigs were left on picked vine. Pickability 944 g. with 14 out of 20 over 1000 g.

OB 844 (Fair to poor)

Machine picked Sept. 4. Hop has a characteristic light green cone. During picking there was light shatter (re-cleaner), cones detached with long petioles and also as clusters. Average number of cones (1-2%) left on the picked vine. Hop vine was brushy which resulted in a heavy load of leaves on re-cleaner, with some leaves not removed. Pickability force was 486 g.

OB 831 (Very good)

Machine picked Sept. 4. Hop was rated as a very good picker. There was very little shatter (comparable to good seedless), having a good break on the cone petiole and with no clusters. Hop vine had a few male flowers near the trellis. Less than average number of cones left on vine. Pickability force 444 g.

OB 801 (Poor)

Machine picked Sept. 4. Vines were thin with a light cone set. There was a moderate shatter, detached cones had long petioles and with clusters. Whole sidearms broke from the vine during picking and there was above average cone loss on picked vine. If vine had a heavier set it probably would rate as a poor picker with heavy shatter. Pickability force 669 g.

OB 829 (Poor)

Machine picked Sept. 13. Hop was a poor picker with moderate to heavy shatter, long petioles on picked cones, also with some clusters. Large numbers of broken cones were left on the vine along with bare strigs. Pickability force was 891 g. but 10 of the 20 cones required more than 1000 g. Readings in excess of 1000 g could not be determined.

OB 825 (Good)

Machine picked Sept. 13. Hop was low yielding, but a good picker with light shatter and a good pick on the vine. Picked cones had a long petiole. Pickability force 846 g. with 6 out of 20 cones above 1000 g. Indication being that due to a tight cone the additional picking force did not break up the cone.

OB 822 (Poor)

Machine picked Sept. 13. Hop was a poor picker with heavy shatter, long petiole with extended fiber on picked cones, with some clusters. Large number of broken cones and bare strigs left on vine. Pickability force 992 g. with 19 of the 20 cones above 1000 g.

OB 833 (Fair)

Machine picked Sept. 17. Hop picked with light to moderate shatter, long cone petioles and some clusters. Most of the vine leaves were off the picked vine, even though very few cones were left on the vine it also had many bare strigs. Pickability force 602 with 4 out of 20 above 1000 g.

OB 843 (?)

Only one vine available so it was hand picked Sept. 17. Vine was low in yield and had pickability of 578 g.

OB 840 (Very poor)

Machine picked Sept. 17. Hop picked with very heavy shatter, cones were light and partly broken and this caused some cones to be discarded over bottom re-cleaner even though the air was reduced to a minimum. The vine picked clean, but it had some bare strigs and additional bare strigs were found in the picked cones. Pickability force 552 g.

OB 835 (Very good)

Machine picked Sept. 17. Hop picked with light shatter and with a long break on cone petiole in excellent condition. Vine was picked clean with both vine and lateral leaves intact. Very few hops display this property. Most hops lose their lateral leaves during mechanical harvest and they are easily removed by the recleaner. Some hops also lose their vine leaves resulting in broken leaf petioles mixed with the picked cones. Usually if the vine leaf is detached, the petiole is so brittle that it also breaks at the base of the leaf, leaving the stem-like petiole.

Pickability of OB 835 is similar to the Brewer's Gold seedless hop (Smith) in that these two varieties do not lose many leaves when picked by a portable machine. OB 835 probably would rate as the best agronomic variety in 1963 with also having a 4-hill plot yield of 62 pounds. Pickability force 578 g.

OB 842 (Poor)

Machine picked Sept. 23. Hop picked with moderate shatter, many large clusters lost through rear of machine, most of picked cones were in clusters and with many leaves and petioles etc. (dirty). This hop set cones in clusters (3-5 cones) with very short cone petioles which were protected from the force of picking fingers, so that the breaking point was the secondary branch of the lateral, resulting in clusters. The vine of this hop was very brittle and subsequently broke when clamped in the grasper bar. The brittleness was also noticed in the leaves, since all the leaves were removed from the picked vine.

Supplement to OB pickability:

Selection 15-S was picked by hand, yielding 200 g of dried hops. This sample was kept for quality evaluation.

Selection OB 812, 813 and 827 were machine picked August 30th without getting detailed notes on pickability or dynamometer readings.

Selection OB 812 and 827 were rated as poor pickers having many clusters in with the cones. Selection OB 813 was rated as a good picker with clean hops. This selection had sterile male flowers.

Pluckability Data - Minor Elements Study on Fuggle Hops, 1963.

		<u>ı</u>		3	1		3	<u>1</u>	<u> </u>	3	Total
	-(1) 1(2) (3)	2350 1740 2330	2290 1740 2440	1580 3 280 1 380	1320 1780 2600	2470 1 950 1 590	1760 2050 1530	2000 2480 1710	1520 1910 2220	1960 2030 2160	17250 18960 17960
	Sub. RT	6420	6470	6240 19130	5700	6010	5340 17050	6190	5650	6150 17990	54170
Mg.	(1) (2) (3)	1840 1920 2410	1450 1860 1650	2590 1230 21140	1810 1920 1530	1090 1100 1660	1170 2500 2080	1970 1350 1600	1800 1960 2170	1430 2050 1770	15150 15890 17310
	Sub. RT	6170	4960	<u>6260</u> 17390	5260	3 850	5 7 50 14860	4920	5 93 0	5250 16100	48350
Fe	(1) (2) (3)	2260 1560 2030	2590 1400 1630	1320 1830 1660	1870 2290 2110	1620 1810 2400	1900 1930 2030	1980 1150 1940	1620 2130 1770	2800 2200 2300	17960 16300 17870
	Sub. RT	5850	5620	4810 16280	6270	5830	5860 17960	5070	5520	7300 17890	52130
Mn	(1) (2) (3)	2070 1820 1670	1440 1610 1790	1520 1400 1500	1810 1850 1850	1780 1730 1330	1450 1490 1030	1910 2100 1970	1860 1600 1700	1340 1740 1590	15180 15340 14430
	Sub.	5560	4840	1420 14820	5510	4840	3970 14320	5980	5160	4670 15810	144950
	Gran	d		67620			64190			67790	199600

Sy ² R ²	=	385,697,400
Sy^2R^2	=	13,288,304,600
Sy2T2	=	10,010,150,800
Sy^2Sa		1,120,712,400
Sy^2Sb	=	1,125,213,000
Sy ² RT	=	3,345,044,200

	Ana	nce		
Source	DF	SS	MS	F
Treatments	3	1,855,955	618,652	*
Replications	2	229,202	114,601	$N_{\bullet}S$
Error	6	696,051	116,008	
Plot total	11	2,781,20	08	
Plants within				
plots	24	1,899,222	79,134	
Plant total	35	4,680,4	30	
Clusters within				
plants	72	12,126,600	168,425	
Sample total	107	16,807,03		

Treatments	Pluckability 1/	Shatter (% whole)
Untreated	401 a	10.1
MgEDTA (2 lbs/Ac)	358 ъ	5•9
FeEDDNA "	386 a	8.6
MnEDTA "	333 c	5.8

1/ Avg. gram-force required to detach cones.

Hops treated with FeEDDA were not significantly different from untreated, whereas Mg & Mn produced hops with significantly lower pluckability than untreated.

Determination of sample size with pluckability data (gram-force) obtained from seeded Fuggle treated with 5 ppm Gibrelate at 5-foot stage, 1963.

Plant	Cluste	r Read	lings	per	r cli	ıster	Total	Plant	Cluster	Read	lings	per	clu	ıster	Total
Samoli	ng met	hod us	sing	10 r	olani	ts. h	sec.	latera	ls/plant	& 5	read	ings	/lat	eral	
1	1 2 3 4	240 270 430	250 270	300 370 200	250 320 320	390 370 3 3 0	1430 1600 1550 1430	2	1 2 3 4	270 210 240	250 230 250 260	230 260 330	200 260 290	300 400 380	1280 1360 1490 1540
3	2 3 4	300 190	190	320 230	300 230		980 1490 1130 1320	14	1 2 3 4	230 230	250 230 260 270	220 220	280 270	320 320	1310 1280 1300 1630
5	1234	180 180	280 240 240 190	250 250	370 240	420 320	1540 1460 1230 1340	6	1 2 3 4	260 270	240 3 1 0 230 280	270 250	250 280	370 320	1110 1460 1350 1420
7	1 2 3 4	170 160	260 250 280 250	310 210	230 240	320 340	1430 1280 1230 1220	8	1 2 3 4	230 250	310 200 330 210	250 160	400 190	320 250	1170 1790 1710 17150
9	1 2 3 4	230 180	230 260 1140 310	220 250	250 230	390 330	1370 1350 1130 1360	10	1 2 3 4	250 220		220 260	210 180		1110 1070 1140 1270
-	ng met	hod us	sing	20 1	olan	ts, 1	sec.		1/pl. &	5 001	nes/1	ate	ral.	1.00	7020
1 2 3 4 5 6 7 8 9 10		290 240 270 260 280 340 330 350	310 260 320 290 250 260 290 360 280 230	250 340 330 250 320 350 360 460	320 340 280 290 340 360 430 410	340 380 400 250 360 450 420 560	1520 1460 1670 1570 1300 1560 1790 1840 2060 1450	11 12 13 14 15 16 17 18 19 20		260 360 280 200 310 300 330 200	330 260 370 260 350 260 280 340 260 290	320 430 320 260 360 310 270 250	330 400 320 370 230 430 270 240	310 440 380 520 380 330 440 320	1930 1480 2000 1560 1700 1540 1650 1650 1270 1460

Determination of sample size with pluckability data (gram-force) obtained from seeded Fuggle treated with 5 ppm Gibrelate at 5-foot stage, 1963.

Sampling method using 20 plants, 2 sec. lateral/plant, & 5 readings/lateral. Laterals sampled from 2 different heights.

Plant	7 foot height Readings per cluster	Total	ll foot height Readings per Cluster	Total
123456789011234567890	190 200 220 320 280 200 220 320 180 320 280 270 260 280 340 280 260 330 400 350 160 210 240 310 370 230 270 200 250 240 250 280 280 280 360 250 250 220 240 330 270 270 270 320 280 310 190 230 230 230 230 230 230 230 230 230 23	1210 1240 1430 1620 1290 1190 1470 1760 1360 1290 1450 1260 1240 1430 1280 1280 1280 1380 1340	380 400 480 340 510 340 320 360 270 370 330 330 320 270 320 280 330 320 300 360 290 240 370 350 360 260 310 370 280 380 260 370 250 310 290 420 430 330 390 670 280 230 290 330 470 280 270 220 310 400 430 280 320 260 390 270 290 320 280 330 310 370 240 330 460 380 430 450 460 620 360 380 380 420 360 360 340 430 360 490 210 250 280 600 320 180 320 190 200 430 190 230 350 350 470 270 230 280 320 330	2110 1660 1570 1590 1610 1600 1450 2240 1600 1480 1480 1710 2340 1900 1980 1660 1320 1590 1430
Totals	4820 5310 6570 4970 5520	27190	6080 6550 8300 6350 6730	34040

Infiltration rates of soil samples obtained from Permanent Cover Trial on Fuggle. Samples obtained from 3 depths within each of 3 core locations per plot, 1963.

				CHARGE	tion Co. Phonesis, on Street,	matter at an annual	infiltra	SALEDA DE MERMON DA	CHARLES AND	5,10 & 2	STATE OF STREET	A STREET, SQUARE, SQUA
Replica	tion C	ore loca	ation	5	Depth 10	20	5	Dept 10	h 2 20	5	Depth 10	<u>3</u> 20
	Gr	ass tre	atment									
I		X1 X2 X3		62	178 82	415 *	2 200 1	5 602 1	8 1101 2	6	11 ₄	22 4
II		X1 X2 X3		5 12	11 22	20 36	3 23 12	4 66 30	الأ ر د الأرد أ	0 ÷ 4	0 + 14	0 + 1 ₄
III		X1 X2 X3		50 24	168 69	153	0 110 62	14 286 188	4 616 416	0 25 0	97 0	1 156 0
IA		X3 X3		6. 4	10 0 *	9 5 *	22 29 72	43 57 212	77 135 1446	0 0 12	0 0 56	が0 0 0
ν		X1 X2 X3		 	••••••••••••••••••••••••••••••••••••••	0	51 0 0	161 0 0	300 0 0	0 0	0 6 0	0 10 0
ΔI		X 1. X2 X3		12 0 33	32 0 76	40 0 155	0 14 22	0 5 81	0 5 170	0 7 *	0 13 +	0 22 +
	Culti	vated to	reatme	nt								
I		X1 X2 X3		9 4 0	23 4 6	48 4 11	0 19 10	0 51 19	- 0 75 24	0 28 5	0 73 8	0 119 8
II		X1 X2 X3		32 2	94 2	2	+ +	* + +	+ + +	0 * 8	0 * 15	0 + 22
III		X1 X2 X3		5 4 22	7 4 51	8 8 95	2 1 32	2 9 53	19 95	14 28 114	4 56 45	109 98
IA		X1 X2 X3		10 * 26	18 * 86	25 + 196	0 90 78	1 1145 228	1 302 476	0 200 1	了 村村 0	0 772 1
٧		X1 X2 X3		5 0 24	9 0 71	20 3 158	0 0 80	0 0 180	3 0 308	0 0 +	0 0 +	14 0 ∻

Infiltration rates of soil samples obtained from Permanent Cover Trial on Fuggle. Samples obtained from 3 depths within each of 3 core locations per plot, 1963. — cont.

		Complete Sec.	e of	H20	infiltra		fter	5,10	& 20	o minu	ites
Replication	Core location	5	10	20	5	10	20		5	10	20
Cul	tivated treatmer	ıt									
Δī	X1. X2 X3	0 0	0 0 0	0	50 * 22	149 68	338 + 123		1) ₄ +	40 + +	78 + +

 $[\]star$ Excessive water percolation caused by holes from roots and earth worms.

⁻⁻ Missing data

Bulk density determination from Permanent Cover Trial on Fuggle, 1963.

		Charles and a second	rass epth			:	Fallov Depth	1		
Replication	Core locati		2	3	Total	1	2	3	Total	Total
I	X1 X2 X3	1.59	1.66 1.65 1.65		4.82 4.81 4.94	1.55 1.56 1.58		1.37	4.23 4.28 4.29	
	Sub. Avg.	4.83 1.61		4.78 1.59	14.57	4.69 1.56			12.80	27•37
II	X1. X2 X3	1.59	1.54 1.39 1.33		4.35	1.58		1.60	4.64 4.81 4.98	
	Sub. Avg.			4.00 1.33	12.99	4.80 1.60			14.43	27.42
III	X7 X2 X3	1.57			4.28 4.39 4.37	1.57 1.57 1.64		1.39	4.42 4.36 4.46	
	Sub. Avg.		4.35	4.37	13.04	4.78 1.59	4.24 1.41		13.24	26•28
IA	XI X2 X3	1.58	1.40 1.40 2.44	1.39 1.37 1.37	4•38 4•35 4•42	1.47 1.53 1.57	1.39 1.38 1.41		4.21 4.25 4.35	
	Sub. Avg.	4.78 1.59		4.13 1.38	13.15	4.57 1.52	4.18 1.39		12.81	25•96
٧	X1 X2 X3	1.59	1.54	1.40	4.60 4.53 4.57	1.55	1.41	1.40	4•34 4•36 4•45	
	Sub. Avg.	4•78 1•59				4.76 1.59	4.24 1.41		13.15	26.85
VI	XI X2 X3	1.55	1.36	1.38	4.31 4.29 4.34	1.58		1.55		
	Sub. Avg.	The state of the s			12.94		4.99 1.66		14.71	27.65
	Grand	28.42 2	6.60	25.37		28,52	26,62	26,00		161.53

Plot Harvest Weights (adj. for moisture), Trellis Height Trial, 1963.

Rep.		Fuggle	BG	LC	128I	<u> 1</u>],]4,T	135	I	Total
I	161 181 201	24.9 14.4 (29.9)	39.6 42.7 44.9	23.8 26.9 40.6	34.6 40.5 51.3	35.7 41.8 46.1	17. 20. 29.	0	176.4 186.3 242.7
	Sub.	(69.2)	127.2	91.3	126.4	123.6	67.	7	605.4
II	16: 18: 20:	24.2 26.5 23.6	42.8 33.9 37.0	21.5 17.3 18.2	39•3 29•0 29•2	23.0 35.5 33.0	22. 28. 23.	7	173•7 170•9 164•9
	Sub.	74.3	113.7	57.0	97.5	91.5	75.	5	509.5
III	16: 18: 20:	23.6 22.5 20.3	40.5 46.1 32.6	19.3 20.9 17.6	38.7 42.1 46.7	42.0 40.0 31.3	19. 24. 27.	4	183.4 196.0 175.6
	Sub.	66.4	119.2	57.8	127.5	113.3	70.	8 _	555.0
								1	.669•9
Sy ² Sy ² v ² Sy ² R ² Sy ² H ² Sy ² Su	= = = h a =	56,537. 493,331. 934,124. 930,774. 314,185.	75 161 41 181 73 201	72.7 12 63.4 12	B.G. L.C. 22.9 64.6 22.7 65.1 14.5 76.4	128I 112.6 111.6 127.2	1),41 100.7 117.3 110.4	135I 60.0 73.1 80.9	Total 533.5 553.2 583.2
Sy ² VH	=	165,158		209.9 36	50.1 206.1	351.4	328.4	214.0	1669.9
Sourc		An. DF		f Variand	And the state of t	F			
bourd	0	Dr		00	MS	7			
Heigh Repli	t cation	2 2		9.60 5.69	34.80 127.84	N.S. 2.56	N.S.		

Source	DF	SS	MS	F
Height	2	69.60	34.80	N.S.
Replication	2	255.69	127.84	2.56 N.S.
Error a	4	398.83	49.85	
Sub a	8	724.12		
Varieties	5	3174.53	634.91	22.19 ***
V x H	IO	168.72	16.87	N.S.
Error b	(29)	829.55	28.61	
Sub b	7474	4172.80		
Grand	52	4896.92		

Height of Trellis Experiment - 1963

% < -acid (dwb)

Variety										
Rep.	Height	Fug.	L.C.	B.G.	128-I	135-I	7/4-I	Sum		
I	16: 18: 20:	7.21 7.22 (7.25)	8.81 9.13 8.35	13.83 13.90 13.90	14.52 13.11 15.04	4.13 3.89 3.50	5.70 5.23 5.53	54.20 52.48 53.57		
	*	(21.68)	26.29	41.63	42.67	11.52	16.46	(160.25)		
II	16: 18: 20:	7.69 7.76 7.73	9•14 7•08 6•59	13.77 13.25 13.90	14.95 14.14 15.07	3.8 8 3.92 3.99	5.63 5.63	54.84 51.78 52.91	1	
		23.18	22.81	7∪•35	44.16	11.79	16.67	159.53		
III	16: 18: 20:	7.22 7.79 7.67	7•31 7•23 6•71	12.97 13.43 13.85	12.90 14.45 13.98	3.81 3.87 4.28	5•59 5•67 5•70	49.80 52.44 52.19		
		22.68	21.25	40.25	41.33	11.96	16.96	154.43		
		Λ	ariety :	x Height	Interact	sion				
	161 181 201	22.12 22.77 (22.65)	25.26 23.14 21.65	40.57 40.58 41.65	42.37 41.70 44.09	11.82 11.68 11.77	16.70 16.53 16.86	158.84 156.70 (158.67)		
•	Sum	(67•54)	70.35	122.80	128.16	35-27	50.09	(474.21)		
Sy2	= 1	4,990,096	3			nalysis c		nce MS		
Sy ₂ R ₂	= 71	4,978.508	3	urce	DF		SS		F	
Sy ² H ² Sy ² su Sy ² VH	= 71 b a = 25 i = 11	4,990,096 4,768,580 4,978,508 4,961,204 5,003,387 4,942,527	3 Er.	igh t pl ic atio ro r a Subtotal	14	1.	1572 1185 6013 2 . 8770	0.0786 0.55925 0.400325	0.196 1.397	ns ns
			Va: V : Er:	riety x H ror b Subtotal and	5 10 29	809 6 6 13		51.98652 7 0.63985 0.22531379	718.94 2.840	**

% CV = 7.23

Height of Trellis Experiment - 1963

% /3 -acid (dwb)

	Variety										
Rep.	Height	Fug.	L.C.	B.G.	128-I	135 - I	711-1	Sum			
I	16: 18: 20:	3.08 2.98 (3.02)	5.16 4.52 5.72	4.67 4.66 4.32	4.53 4.23	6.16 6.30 6.11	4.59 4.85 4.67	28.40 27.84 (28.07)			
		(9.08)	15.40	13.65	13.50	18.57	14.11	(84.31)			
II	16: 18: 20:	3.17 3.25 3.06	4.85 2.62 3.04	4.99 4.53 5.00	4.81 4.40 4.18	5.97 5.87 6.23	4.87 4.58 4.47	28 . 66 25 . 25 25 . 98			
		9.48	10.51	14.52	13•39	18.07	13.92	79.89			
III	16: 18: 20:	3.15 3.04 3.19	3.02 2.77 2.77	4.65 5.04 4.93	4.69 3.80	5.88 6.03 5.95	4•14 4•55 4•27	25.37 26.12 24.91			
		9•38	8.56	14.62	12.72	17.86	13.26	76.40			
			V a riety	x Height	Interac	tion					
	16: 18: 20:	9.40 9.27 (9.27)	13.03 9.91 11.53	14.31 14.23 14.25	13.78 13.62 12.21	18.01 18.20 18.29	13.90 13.98 13.41	82.43 79.21 78.96			
	*	(27.94)	34.47	42.79	39.61	54.50	41.29	(240,60)			

Sy ² Sy ² v ²		=	1,129.7262
SyZVZ		=	10,043.8748
Sv ² R ²		=	19,327.5482
Sy ² H ²		=	19,303.6106
Sysub	a	=	6,449.8684
SyVH		=	3,374.4682

	Anal	ysis of Var	iance	5
Source	DF	SS	MS	F
Height	2	0.1162	0.2081	1.029
Replication	2	1.7460	0.8730	4.315
Error a	4.	0.8092	0.2023	
Subtotal a	8	2.97714		
Variety	5	43.9794	8.79588	108.62
V x H	10	8.4205	0.84205	10.400
Error b	29	2.3483	0.080976	5
Subtotal b	2,2,	54.7482		
Grand	52	57.7196		

Moisture dry-down percentages, Trellis Height Trial, 1963

Rep.		Fuggle	BG	LC	128I	חויד.	1351
I	16° 18° 20°	26.0 26.1	26.2 27.8 28.5	21.4 22.6 23.4	30.2 28.9 28.2	24.3 22.5 23.7	24.5 24.3 25.0
II	16: 18: 20:	24.7 21.5 25.0	25.7 26.1 28.5	22.7 22.8 23.3	28.9 29.9 29.9	22.0 21.9 23.9	24.1 23.2 23.9
III	16° 18° 20°	24.5 24.1 25.9	27.4 29.0 27.9	21.3 22.4 22.9	26.9 29.0 28.4	22.0 23.5 23.0	24.3 23.5 24.8
Avera	age	(24.7)	27.4	22.5	28.9	23.0	24.2

Pluckability -- Height of Trellis Experiment - 1963. (Each value represents an average of 20 readings (5 from each of 4 plants)

Rep	. 2.							7
Hei		Fuggle	L.C.	B•G•	128 - I	<u>135-</u> I	1);/1-I	Total
I	16: 18: 20:	411 427 (417)	417 637 475	466 443 455	490 457 478	37l4 41l4 42l4	336 350 351	2494 2728 (2600)
		(1255)	1529	1364	11,25	1212	1037	(7822)
II	16: 18: 20:	5 1 3 450 538	685 678 61 ₁ 1	455 457 467	415 501 481	369 378 423	33 4 429 356	2771 289 3 2906
		1501	2004	1379	1397	1170	1119	8570
III	16: 18: 20:	497 3 77 445	586 65 7 569	4419 481 458	387 1411 1480	370 407 309	326 396 434	2615 2759 2695
		1319	1812	1388	1308	1086	1156	8069
				Variety >	x Height			
	16: 18: 20:	11421 1254 (11400)	1688 1972 1685	1370 1381 1380	1292 1399 1439	1113 1199 1156	996 1175 11/1	7880 8380 (8201)
		(4075) 453	5345 594	4131 459	4130 459	3468 385	3312 368	21446 1 4 53
sy_2^2		= 11,494,	513		Anal	ysis of Var	riance	
Sy	V2 :	= 102,293,	079 So	ource	DF	SS	MS	F
$Sy_{2}^{2}R^{2} = Sy_{2}^{2}H^{2} = Sy_{2}^{2}Sub a = Sy_{2}^{2}VH = Sy_{2}^{2}VH$		= 199,575, = 66,628,	201 Re 077 Er	eight eplication rror a Subtotal a	2 2 4 8	7,131. 16,139 1,029 24,299	3,565.5 8,069.5 2 57.2	13.86 * 31.37 **
			Va V Er	arieties x H rror b Subtotal b rand	5 10 29(30) 43 52	285,515 49,598 54,721 389,834 414,133	57,103.0 4,959.8 1,887.0	30•26 ** 2•63 *

Pluckability -- Height of Trellis Experiment - 1963. (Statistical analysis based on 5 readings from each plant in the experiment)

Sy2 = 214,335,080			rsis of Varia		न
$S_{V}^{2}H^{2} = 79,833,360,900$	Source	DF	SS	MS	7
Sy ² H ² = 79,833,360,900 Sy ² R ² = 79,898,465,100 Sy ² HR = 26,652,389,700	Heights	2	142,676	71,338	*
Sy2HR = 26,652,389,700	Replications	2	323,521	161,760	**
SACAS = 40 2 1 1 2 100 2 100	Error a	2 4	20,391	5,098	
Sy ² HV = 13,680,811,700	Sub Plot	8	486,588		
Sy ² HV = 13,680,811,700 Sy ² RVH = 4,597,707,700	Varieties	5	5,701,044 1	209 209	**
	Heights x				
	Varieties	10	553 ,1 48	55,315	N.S.
	Error b	29(30)	1,527,945	52,688	
	Plot total	52(5	3) 8,268,725		
	Plants within				
	plots	162	5,018,815	30,980	
	Plant total	1 215	13,287,540		
	Cones within				
	pl.	864	8,944,292	10,352	
	Sample total				
			22,231,832		

Interaction tables

							The second second
				Variety	T		
Height	Fuggle	L.C.	B.G.	Illi-I	135 - I	128 - I	Total
16t 18t 20t	28,400 25,070 28,000	33,750 39,山山0 33,690	27,400 27,610 27,600	19,920 23,500 22,820	22 , 270 23 , 990 23 , 130	25,860 27,990 28,790	157,600 167,600 164,030
Total	81,470	106,880	82,610	66,240	69,390	82,640	489,230
Rep.	Fuggle	L.C.	B.G.	128 - I	135 - I	1/1/1-I	Total
I II III	25,090 30,010 26,370	30,580 40,060 36,240	27,260 27,590 27,760	28,510 27,970 26,160	24,250 23,400 21,740	20,740 22,380 23,120	156,430 171,410 161,390
Rep.	161	<u> 18;</u>	201				
I II III	149,870 55,1430 52,300	54,560 57,870 55,170	52,000 58,110 53,9 2 0				

Feb. 6, 1964

After the hop cuttings were dug they were evaluated for number of roots and also the length of the roots. Photographs were taken on each treatment. The following notes will include observations on visual characteristics of the hop cuttings.

Treatment 1 has normal looking cuttings which are firm comparable to that of the check. The buds look very good on all of the soaking times. This treatment also displays an increased amount of root initiation at the base.

Treatment 2. All soaking times showed an excellent root development with considerable branching in the new roots which were initiated. The cuttings had a warty-calloused appearance with the base being enlarged as well as all nodes. The 48 hour soak showed a brown discoloration at the nodes which penetrated into the cortex. All cuttings from this treatment had a brown rough outer surface.

Treatment 3 was characteristic of having cuttings which were soft to the touch in that the cortex was pulpy, indicating a depletion of food reserves. Other than this feature the cuttings were normal in outward appearance.

Treatment 5 had cuttings with similar outward appearance to that of the check, but there was an apparent increase in number of roots initiated. No other differences were noted.

Treatment 6 has quite abnormal looking cuttings, having warty appearance in all soaking times, probably more so with a 6 hour soak. This soak also has a firmer cutting than that of the 20 and 48 hour soak. The cuttings are larger in diameter than those of the 6 to the 48, with the 48 hour soak having a tremendous increase in size, approximately double that of when the cutting was planted. The 48 hour soak also has an increased degree of rot as compared with that of the 20 and 6 hour soak. The cuttings are also soft and spongy with an increased amount of water present in the tissue.

Treatment 7 has a normal looking cutting in texture, but all of the cuttings are soft and corky to the touch. It appears that most of the buds on the cuttings have been stimulated more so with the 20 and 48 hour soak. As many as 5 buds have been stimulated at each node, which appears to be quite abnormal on most cuttings. The stimulated buds are very spindly, having the appearance of roots rather than shoots.

Treatment 8 has normal looking cuttings which are firm under the cortex, the six hour soak shows a large number of small rootlets.

Treatment 9 has firm normal looking cuttings with vigorous shoots and buds at each node.

Treatment 10 has the characteristic warty appearance on all cuttings with convolutions which are characteristic of the synthetic auxin treatment. The cutting is firm which is contrary to that observed earlier with gibberellin treated cuttings. Under the cortex there appears to be a great number of rootlets initiated from cuttings common to all soaking times. The shoots from the 6 hour soak appear to be quite normal whereas that of the 48 hour appeared to be

different in that they have a weak bud which is abnormal in some way. The root set appears to be satisfactory, but the treatment might be restricted to the 6 hour soak.

Treatment 11 has normal cuttings, with the 6-hour soak showing some wartiness, but not having an abnormal color whereas cuttings from the 20 and 48 hour soak show a brown discoloration on the outer surface with a rot present at all of the nodes. The nodes are also enlarged with the 20 and 48 hour treatments. A good set of roots is evident on the 6 hour and 20 hour soak. This may be a promising treatment.

Treatment 12 has normal cuttings with the 6 hour soak having a good root system with some roots appearing at the base as well. The 20 and 48 hour soak display a warty surface with an enlargement of all of the nodes and a marked increase in callous tissue at the base. The nodes and bases of all of these cuttings also show a progressive rot.

Treatment 13 has normal cuttings which are soft and corky probably being typical of all gibberellin treated hop cuttings. There does not appear to be the stimulation at the lower nodes that was evident with other gibberellin cuttings.

Treatment 14 was a normal looking cutting with a soft corky feel similar to that of treatment 3. Removal of the cortex displayed a large number of rootlets had been initiated from the pericycle, but had not extended past the epidermal tissue. This might be a good characteristic of this treatment.

Treatment 15 has normal cuttings with a light brown surface being very firm similar to that of the check. There is no enlargement of the nodes or basal portions of the cuttings from any of the soaking times. Buds at the nodes are also quite normal in appearance.

Treatment 16, being the check, has a normal cutting which is firm which shows a moderate root set, but interesting to note, a large number of rootlets under the cortex, especially with the 6 hour soak.

Treatment 17 was a complete dust of the hop rhizome with "Rootone" prior to the planting. Observations on this date indicate that considerable damage was done to the buds and the cells proliferated causing an outward warty and corky characteristic on the epidermis. The roots were very short, mainly extended from the base of the root, whereas very small rootlets appeared throughout the cutting. This indicated that there was a root inhibition and/or the concentration was too high. This treatment would be unfavorable for commercial practice.

Treatment 18 showed very little if any root development on the cutting itself and the only roots which appeared were those at the base of the cutting. The surface of the cutting was a light brown surface with a normal smooth texture.

Notes on greenhouse rooting experiment

Feb. 25, 1964

Treatment 1 -- Normal foliage, 20 hour soak best for rooting, good apical buds on all.

Treatment 2 -- Normal foliage on 6 hour soak, abnormal on rest. Excellent rooting on 6 hour, with progressively less on longer soaking times, corresponding with a progressive rot with the longer soaks. Roots on longer soaking times appear to have been inhibited and/or died due to the rot of cuttings. Suggest a shorter soak than six hours or a lower concentration.

Treatment 3 -- Rooting average in all soaking times, foliage abnormal. Foliage above the 18" level has unifoliate leaves which are crinkled and appear to be withered.

Treatment 4 -- Normal foliage, with an apparent increase in rooting with longer soaking times. Average number of roots. The 6 hour soak has a greater number of rootlets at the base than the other soaking times.

Treatment 5 --- Normal foliage with a possible increase in vigor. All vines appear to be strong in all soaking times. Six hour soak displays more roots primarily due to an increased number at the base of the cutting as compared with the other soaking times.

Treatment 6 — Cuttings are similar in looks to those of treatment 2. The longer soaking times display cuttings increased in size due to increased water uptake or increase in callus tissue. This treatment has the largest number of living roots, though the longer soaking times display a rot in all cuttings with a progressive rot in the six hour soak. Suggestion similar to that with treatment 2.

Treatment 7 -- Average root set, vigorous growth with unifoliate leaves above the 18th level, being chlorotic yellow and wilted.

Treatment 8 -- Normal foliage, less than average root set, cuttings soft and undergoing rot. The 48 hour soak having an increased root set at cut base of the cuttings.

Treatment 9 -- Average root set, average foliage on 6 and 20 hour soak. The 48 hour soak having unifoliate leaves on upper portions of the vine.

Treatment 10 -- Foliage present only on 6 hour soak, being average except for unifoliate leaves, having a good root set, except at the 20 and 48 hour soak. The cuttings at the 6 hour soak appear sound, whereas the 20 hour soak has the start of a rot and the 48 hour soak has a progressive rot with an enlargement of all the nodes and cuttings.

Feb. 26, 1964

Treatment 11 -- Good foliage, short on 6 hour soak, with good roots, 20 hour had stunted shoots with very good roots, 48 hour had no foliage cuttings rotted with some new roots at base.

Treatment 12 -- Six hour soak had uneven shoot growth with up to 12 roots, 3 in. long, from base pericycle, fair number of roots. 20 hour had good roots, with no shoots. Same for 48 hour plus node enlargement.

Treatment 13 -- Shoots with unifoliate leaves, poor roots.

Treatment 14 - Shoots with simple leaves, poor roots.

Treatment 15 - Fair shoots, least number at 48 hours, same for roots.

Treatment 16 -- Good shoots, best at 6 hours, worst at 48 hours, fair to good roots.

Treatment 17 -- Cuttings rotted, many short roots (1-2 mm), root initiated at apical cut.

Treatment 18 -- Fair foliage, but uneven. Simple leaves, less than average root set.

Special apparatus and details of methods for isolation of hop volatile from brewing products.

A special distillation unit was constructed which would allow simultaneous condensation of a steam distillate and an immiscible extracting solvent (figure 1). The distillate-return arms were at different levels so that the low-density layer returned through arm A and the high-density layer returned through arm B.

Use of a 15 ml. conical centrifuge tube as the solvent distillation flask allowed concentration of the extract without transfer. Loss of extracting solvent as vapor was compensated for by addition of fresh pentane through the vent in the ∞ ndenser (figure 1).

This design offered several advantages. First, a large interface was available at the condenser surface for extraction into the solvent phase. Second, fresh solvent was continually supplied for the extraction so that accumulation of solutes was possible. Third, solutes occurring in parts per billion quantities were concentrated 32,000 times in a single operation with minimum exposure time.

Materials and methods:

A freshly distilled seedless 'Late Cluster' hop oil sample was divided into 50/1. aliquots and each sealed in a glass ampoule. These were stored at -5°F. and a fresh ampoule was opened for each test requiring hop oil. The analysis of the lot was:

Peak No.	2. 3. 4. 5. 6. 7. 8. 9.	Myrcene 2-methylbutyl isobutyrate Methyl octanoate Methyl dec-1-enoate (2) 3-caryophyllene Undecanone-2 Methyl dec-1,8-dienoate (2) Humulene Oxygenated component with retention time identical with humulene Hydrocarbon with retention time corresponding to farmesene Oxygenated sesquiterpene Unidentified components	63.4% 3.6% 0.8% 2.7% 2.2% 0.6% 1.7% 10.3% 1.1% 1.1%
		Total	100.0%

All extractions were made into pentane which had been pruified by stirring with concentrated H2SO1 for two days after which it was washed twice with water, twice with 5% NaH CO3, twice with water, then redistilled (B.P. 36-38°C.) and stored over Na2SO1.

Separations of hydrocarbon from oxygenated fractions were carried out using 80/100 mesh silicic acid (13% moisture). Columns of 7 mm. diameter were prepared with 5 cm. of Na₂SO₁, followed by 10 cm. silicic acid

which was added as a slurry with pentane. The columns were loaded with 50 Al. samples and the hydrocarbons eluted with 8 ml. pentane at a rate of 0.5 ml. per min. Oxygenated components were eluted with 10 ml. reagent grade, anhydrous ethyl ether.

Distillation-extraction of model systems were carried out as follows: Nine liters of 3.5% ethanol in distilled water (v/v) were acidified with 2 ml. glacial acetic acid, then neutralized to the desired pH with 2 M NaOH. The system was then buffered with KH2PO1 and NaOH according to standard practice. The system was purged for at least 30 min. with N2 and the hop oil added as an ethanol solution. Return arm B of the distillation-extraction apparatus was prepared with 70% ethanol and a layer of pentane added to arm A. Five ml. pentane and a boiling chip were added to the pentane reservoir. The pentane distillation rate was adjusted to about 1 ml. per min. before distillation of the sample began. The distillation rate of the model system was adjusted so that condensation occurred on the top 3 to 5 cm. of the condenser. Except where noted, distillation time was 2 hr.

Wort and beer samples were obtained from a local brewery in plastic containers and held at 35°F. until use. The wort was hopped with 0.21 lb. seedless 'Late Cluster' per bll. containing about 0.6% oil. Approximately 5 ppm. hop oil was available to the wort. Unhopped wort was taken from the kettle and hopped wort was taken after cooling, aeration and filtration. Beer samples were taken from storage immediately prior to packaging.

Wort samples (8 1.) were prepared for distillation-extraction by first adjusting the pH to 6.0 with 2M NaOH, then buffering with 54.3 g. KH₂PO₁ and 13.4 ml. 2M NaOH. The distillation-extraction apparatus was prepared by adding distilled water and pentane. The pentane reservoir was prepared as for the model systems. Distillation rates were as for the model systems, and distillation time was 2 hr.

Beer samples were handled in the same manner as the wort samples, except that the distillation-extraction apparatus was prepared with 70% ethanol instead of distilled water. The beer contained about 10 ppm. isohumulene units (1).

Immediately after distillation all pentane extracts were concentrated to about 0.2 ml. in the distillation tubes under a gentle stream of N_2 at room temperature. They were then transferred to calibrated vials made from 3mm. glass tubing and the yolume adjusted to 0.25 ml. with pentane. The vials were capped and held at -5 F. until use.

Gas chromatographic separations were carried out on a 1/8 in. by 27 ft. column packed with 2% butanediol succinate on 60/80 mesh Chromosorb-P. The first 2 ft. section of the column was detachable and was replaced weekly to compensate for column variation due to elution of the stationary phase. The column was operated at 1140°C. under a 2 atm. pressure drop which gave a flow rate of 9 ml. nitrogen per min. The splitting ratio was 2:1. Detection was by means of flame ionization. Under these conditions, the column produced resolution equivalent to about 10,000 theoretical plates when calculated according to the formula; total theoretical plates = 16 (retention time ÷ peak width at the base).

When recovery of hop oil was of interest, identical amounts of oil were: (1) added to the system, and (2) diluted to 0.25 ml. with pentane. After distillation-extraction the volume of recovered concentrate was also adjusted to 0.25 ml. Five rl. of each were chromatographed and recoveries of individual components were calculated by:

where P.H. is the peak height of the component (mm.), R.T. is its retention time (min.), rec. is the recovered concentrate, and ref. is the reference concentrate.

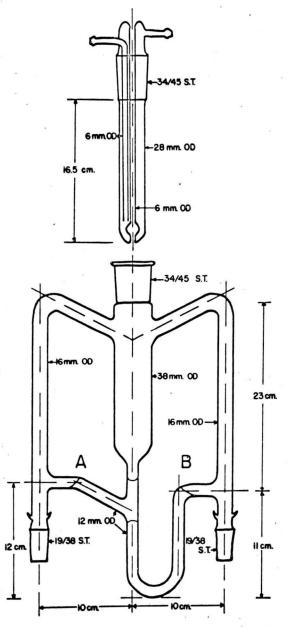
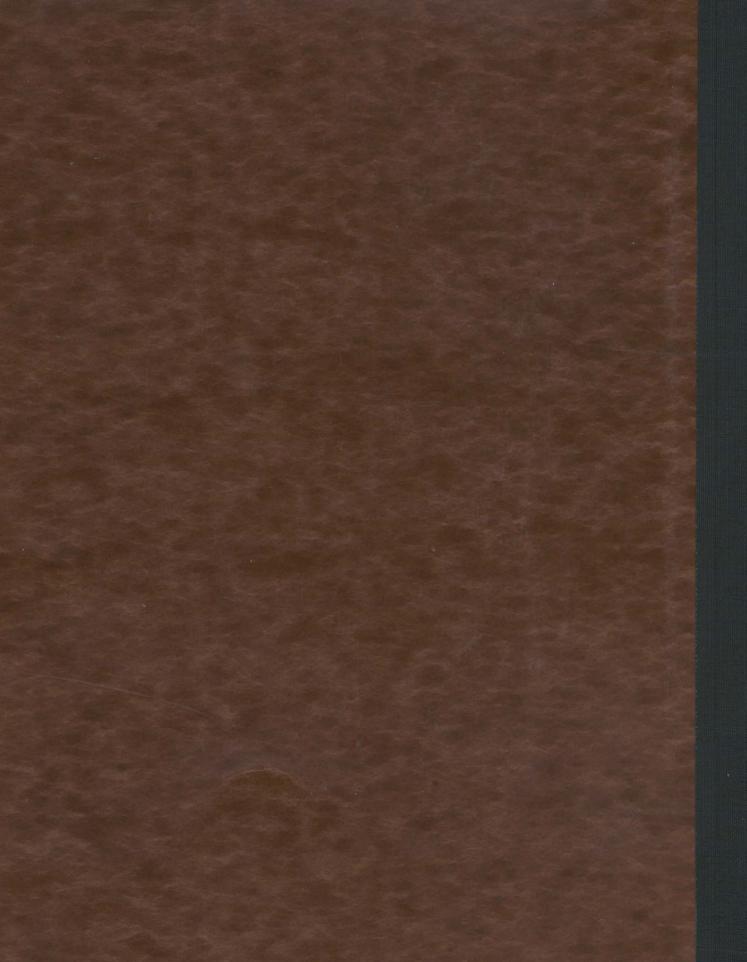



Figure 1. Scaled drawing of distillation-extraction apparatus.

